
Polyspace® Bug Finder™

Reference

R2016b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Reference
© COPYRIGHT 2013–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

September 2013 Online only New for Version 1.0 (Release 2013b)
March 2014 Online only Revised for Version 1.1 (Release 2014a)
October 2014 Online only Revised for Version 1.2 (Release 2014b)
March 2015 Online only Revised for Version 1.3 (Release 2015a)
September 2015 Online only Revised for Version 2.0 (Release 2015b)
October 2015 Online only Rereleased for Version 1.3.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 2.1 (Release 2016a)
September 2016 Online only Revised for Version 2.2 (Release 2016b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Option Descriptions
1

Polyspace Command-Line Options
2

Checks
3

Functions, Properties, Classes, and Apps
4

MISRA C 2012
5

Custom Coding Rules
6

Group 1: Files . 6-2

iii

Group 2: Preprocessing . 6-3

Group 3: Type definitions . 6-4

Group 4: Structures . 6-5

Group 5: Classes (C++) . 6-6

Group 6: Enumerations . 6-7

Group 7: Functions . 6-8

Group 8: Constants . 6-9

Group 9: Variables . 6-10

Group 10: Name spaces (C++) . 6-11

Group 11: Class templates (C++) . 6-12

Group 12: Function templates (C++) 6-13

Code Metrics
7

Polyspace Report Components — Alphabetical List
8

Configuration Parameters
9

Product mode . 9-2
Settings . 9-2
Dependency . 9-2

iv Contents

Command-Line Information . 9-2

Settings from (C) . 9-3
Settings . 9-3
Dependency . 9-4
Command-Line Information . 9-4

Settings from (C++) . 9-5
Settings . 9-5
Dependency . 9-5
Command-Line Information . 9-5

Use custom project file . 9-7
Settings . 9-7
Dependency . 9-7
Command-Line Information . 9-7

Project configuration . 9-8
Settings . 9-8
Dependency . 9-8
Command-Line Information . 9-8

Enable additional file list . 9-9
Settings . 9-9
Command-Line Information . 9-9

Stub lookup tables . 9-10
Settings . 9-10
Tips . 9-11
Command-Line Information . 9-11

Input . 9-12
Settings . 9-12
Command-Line Information . 9-12

Tunable parameters . 9-13
Settings . 9-13
Command-Line Information . 9-13

Output . 9-14
Settings . 9-14
Command-Line Information . 9-14

v

Model reference verification depth . 9-15
Settings . 9-15
Command-Line Information . 9-15

Model by model verification . 9-16
Settings . 9-16
Command-Line Information . 9-16

Output folder . 9-17
Settings . 9-17
Command-Line Information . 9-17

Make output folder name unique by adding a suffix 9-18
Settings . 9-18
Command-Line Information . 9-18

Add results to current Simulink project 9-19
Settings . 9-19
Dependencies . 9-19
Command-Line Information . 9-19

Open results automatically after verification 9-20
Settings . 9-20
Command-Line Information . 9-20

Check configuration before verification 9-21
Settings . 9-21
Command-Line Information . 9-21

Verify all occurrences . 9-22
Settings . 9-22
Command-Line Information . 9-22

vi Contents

1

Option Descriptions

1 Option Descriptions

Source code language (-lang)
Specify language of source files

Description
Specify the language of your source files. Choose this option before specifying other
configuration options because other options change depending on your language
selection.

If you add files during project set up, the language selection may change from the
default.

Files Added Source Code Language

Only files with extension .c C

Only files with extension .cpp or .cc CPP

Files with extension .c, .cpp, and .cc C-CPP

This option is available on the Target & Compiler node in the Configuration pane.

Settings
Default: C-CPP for hand code and C for model-generated code

C

If your project contains only C files, choose this setting. This value restricts the
verification to C language conventions. All files are interpreted as C files, regardless
of their file extension.

CPP

If your project contains only C++ files, choose this setting. This value restricts the
verification to C++ language conventions. All files are interpreted as C++ files,
regardless of their file extension.

C-CPP

If your project contains C and C++ source files, choose this setting. This value allows
for C and C++ language conventions. .c files are interpreted as C files. Other file
extensions are interpreted as C++ files.

1-2

 Source code language (-lang)

Dependencies

• The language option allows and disallows many options and option values. Some
options change depending on your language selection. Refer to the individual analysis
option pages for specifics.

• If you create a Polyspace® project or options file from your build system, the value of
this option is determined by the following:

• The argument to the -lang option. For more information, see “Create Project
Automatically” or “Create Project Automatically at Command Line”.

• If you do not specify the -lang option, the source code language is determined by
whether your source files are compiled as C or C++ files.

-lang Argument C or C++ Source Code Language

c C

cpp CPP

cpp11 CPP

The option C++11
extensions (-cpp11-
extension) is also enabled.

auto or no argument C C

auto or no argument C++ CPP

auto or no argument Both C-CPP

Command-Line Information
Parameter: -lang
Value: c | cpp | c-cpp
Default: c-cpp
Example: polyspace-bug-finder-nodesktop -lang c-cpp -sources
"file1.c,file2.cpp"

Example: polyspace-bug-finder-nodesktop -lang c -sources
"file1.c,file2.c"

1-3

1 Option Descriptions

Compiler (-compiler)
Specify the compiler you used to build your source code

Description

Avoid compilation errors from syntax that is not part of the standard but comes from
C and C++ language extensions. For example, this option allows additional language
keywords, such as sfr, sbit, and bit. These structures and associated semantics are
part of a compiler that extends the language.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

Default: none

none

Analysis allows only standard syntax.

For C code, syntax must follow the ANSI® C standard.

For C++ code, syntax must follow ISO®/IEC 14882:2003 C++ (C++ 2003). If you want
to allow C++ 11 syntax (ISO/IEC 14882:2011 C++), also select C++ 11 extensions.

gnu3.4

Analysis allows GCC 3.4 syntax.
gnu4.6

Analysis allows GCC 4.6 syntax.
gnu4.7

Analysis allows GCC 4.7 syntax.

For more information, see “Limitations” on page 1-6.
gnu4.8

Analysis allows GCC 4.8 syntax.

For more information, see “Limitations” on page 1-6.

1-4

 Compiler (-compiler)

gnu4.9

Analysis allows GCC 4.9 syntax.

For more information, see “Limitations” on page 1-6.
clang3.5

Analysis allows Clang 3.5 syntax.

The Clang __attribute__(vector_size()) is not supported.
iso

Analysis allows for ISO/IEC 14882:2003 C++ (C++ 2003) syntax.

If you want to allow ISO/IEC 14882:2011 C++ (C++ 2011) syntax, also select C++ 11
extensions.

visual6

Analysis allows Microsoft® Visual C++® 6.0 (VC6) syntax.
visual7.0

Analysis allows Microsoft Visual C++ .NET 2002 syntax.
visual7.1

Analysis allows Microsoft Visual C++ .NET 2003 syntax.
visual8

Analysis allows Microsoft Visual C++ 2005 syntax.
visual9.0

Analysis allows Microsoft Visual C++ 2008 syntax.
visual10

Analysis allows Microsoft Visual C++ 2010 syntax.

This option automatically adds the option -no-stl-stubs.
visual11.0

Analysis allows Microsoft Visual C++ 2012 syntax.

This option automatically adds the option -no-stl-stubs.
visual12.0

Analysis allows Microsoft Visual C++ 2013 syntax.

This option automatically adds the option -no-stl-stubs.

1-5

1 Option Descriptions

keil

Analysis allows non-ANSI C syntax and semantics associated with the Keil™
products from ARM (www.keil.com).

iar

Analysis allows non-ANSI C syntax and semantics associated with the compilers
from IAR Systems (www.iar.com).

diab

Analysis allows non-ANSI C syntax and semantics associated with the Wind River®

Diab compiler. See Diab Compiler (-compiler diab).

If you select diab, the option Target processor type (-target) shows only the targets
that are allowed for the Diab compiler.

Dependencies
• If you use a Visual compiler (visual6 – visual12.0), you must use a Target

processor type (-target) option that sets long long to 64 bits. Compatible targets
include: i386, sparc, m68k, powerpc, tms320c3x, sharc21x61, mpc5xx, x86_64,
or mcpu with long long set to 64 (-long-long-is-64bits at the command line).

• If you enable Check JSF C++ rules (-jsf-coding-rules), select the compiler iso
or none. If you use another compiler, Polyspace cannot check the JSF® coding rules
that require conforming to the ISO standard. For example, AV Rule 8: “All code shall
conform to ISO/IEC 14882:2002(E) standard C++.”

Limitations

Polyspace does not support certain aspects of the GNU® compilers, versions 4.7 and later.
These limitations can cause compilation errors, incomplete results, or false positives.

• (C++ only) Priority attributes — Not supported, ignores priorities and uses
standard initialization instead.

Example

#include <stdio.h>

struct A{

 int a;

1-6

http://www.keil.com/
http://www.iar.com/

 Compiler (-compiler)

 A():a(1) {

 fprintf(stderr, "A constructor\n");

 }

};

struct B{

 int b;

 B():b(1) {

 fprintf(stderr, "B constructor\n");

 }

};

A a __attribute__((init_priority (100)));

B b __attribute__((init_priority (50)));

The expected output from the above code is:

B constructor

A constructor

However, Polyspace preserves the standard initialization. So the actual output is:

A constructor

B constructor

Workaround: To use the desired priority, change the order of the declarations to
match the desired order.

• Vector types and attributes — Limited support.

If you encounter compilation issues:

• At the command line, use the option -D _EMMINTRIN_H_INCLUDED -D
_XMMINTRIN_H_INCLUDED.

• In the Polyspace environment, in Macros > Preprocessor definitions, add two
rows: _EMMINTRIN_H_INCLUDED and _XMMINTRIN_H_INCLUDED.

• Visibility attributes — Not supported, ignored.

Workaround: Remove all attributes during preprocessing,

• At the command line, use the option -D __attribute__(x)=.
• In the Polyspace environment, in Macros > Preprocessor definitions, add a

row: __attribute__(x)=.

1-7

1 Option Descriptions

• Complex types — Only floating complex types supported, integral complex types
cause an error.

• Using built-in library function on complex types — Not supported, stubbed
during analysis. Calls to these functions return variables with full ranges.

Workaround: To make the analysis more precise, add an include file that defines the
functions for complex variables.

• Computed goto — Not supported.

Bug Finder ignores the goto.
• Nested functions — Not supported, causes an error.
• Using built-in library functions on atomic operators — Not supported,

Polyspace stubs the functions. This limitation can cause imprecise results.
• IEEE® floating point library functions — Limited support, can cause compilation

errors or imprecise results

This limitation includes isnan, isnanf, isnanl, isinf, isinff, isinfl,
isnormal, and isfinite.

• Local thread declarations for pointers — Pointers declared with the __thread
modifier are considered as shared.

Command-Line Information
Parameter: -compiler
Value: none | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | iso |
clang3.5 | visual | visual6 | visual7.0 | visual7.1 | visual8 |

visual9.0 | visual10 | visual11.0 | visual12.0 | keil | iar | diab

Default: none
Example: polyspace-bug-finder-nodesktop -lang c -sources
"file1.c,file2.c" -OS-target Linux -compiler gnu4.6

Example: polyspace-bug-finder-nodesktop -lang cpp -sources
"file1.cpp,file2.cpp" -OS-target Visual -compiler visual7.1

See Also
Target processor type (-target) | C++11 extensions (-cpp11-extension) | Block
char16/32_t types (-no-uliterals)

1-8

 Compiler (-compiler)

Related Examples
• “Analyze Keil or IAR Compiled Code”

More About
• “Supported C++ 2011 Extensions”

1-9

1 Option Descriptions

Target processor type (-target)
Specify size of data types and endianness by using predefined target processor list

Description

Specify the target processor type.

This determines the size of fundamental data types and the endianness of the target
machine. You can analyze code intended for an unlisted processor type using one of the
other processor types, if they share common data properties.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

Default: i386

The table below shows the size of each fundamental data type that Polyspace considers.
For some targets, you can modify the default size by clicking the Edit button to the right
of the Target processor type drop-down menu. The optional values for those targets
are shown in [brackets] in the table.

If you select the diab for Compiler (-compiler), in the user interface, you see only
the processors allowed for the Diab compiler. To find the data type sizes used for each
processor, see Diab Compiler (-compiler diab). Unlike the processors for other
compilers, you cannot see the data type sizes in the user interface.

Target char short int long long
long

float double long

doublea
ptr Default

sign of
char

endian Alignment

i386 8 16 32 32 64 32 64 96 32 signed Little 32
sparc 8 16 32 32 64 32 64 128 32 signed Big 64

m68kb 8 16 32 32 64 32 64 96 32 signed Big 64

powerpc 8 16 32 32 64 32 64 128 32 unsigned Big 64
c-167 8 16 16 32 32 32 64 64 16 signed Little 64

1-10

 Target processor type (-target)

Target char short int long long
long

float double long

doublea
ptr Default

sign of
char

endian Alignment

tms320c3x 32 32 32 32 64 32 32 64 32 signed Little 32
sharc21x61 32 32 32 32 64 32 32 [64] 32 [64] 32 signed Little 32
necv850 8 16 32 32 32 32 32 64 32 signed Little 32

[16, 8]

hc08c 8 16 16
[32]

32 32 32 32 [64] 32 [64] 16d unsigned Big 32
[16]

hc12 8 16 16
[32]

32 32 32 32 [64] 32 [64] 326 signed Big 32
[16]

mpc5xx 8 16 32 32 64 32 32 [64] 32 [64] 32 signed Big 32
[16]

c18 8 16 16 32
[24]e

32 32 32 32 16
[24]

signed Little 8

x86_64 8 16 32 64
[32]f

64 32 64 128 64 signed Little 64
[32]

mcpu...

(Advanced)g
8
[16]

8
[16]

16
[32]

32 32
[64]

32 32 [64] 32 [64] 16
[32]

signed Little 32
[16, 8]

Targets for
Diab compiler

See Diab Compiler (-compiler diab).

a. For targets where the size of long double is greater than 64 bits, the size used for computations is not always the
same as the size given here. The exceptions are:

• For targets i386, x86_64 and m68k, 80 bits are used for computations, following the practice in common
compilers.

• For the target tms320c3x, 40 bits are used for computation, following the TMS320C3x specifications.
• If you use a Visual compiler, the size of long double used for computations is the same as size of double,

following the specification of Visual C++ compilers.
b. The M68k family (68000, 68020, etc.) includes the “ColdFire” processor
c. Non ANSI C specified keywords and compiler implementation-dependent pragmas and interrupt facilities are not

taken into account by this support
d. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.
e. The c18 target supports the type short long as 24-bits.
f. Use option -long-is-32bits to support Microsoft C/C++ Win64 target
g. mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more

generic targets. For more information, see Generic target options.

1-11

1 Option Descriptions

Tips

If your processor is not listed, use a similar processor that shares the same
characteristics, or create an mcpu generic target processor. If your target processor
does not match the characteristics of a processor described above, contact MathWorks®

technical support for advice.

Command-Line Information
Parameter: -target
Value: i386 | sparc | m68k | powerpc | c-167 | x86_64 | tms320c3x |
sharc21x61 | necv850 | hc08 | hc12 | mpc5xx | c18 | mcpu

Default: i386
Example: polyspace-bug-finder-nodesktop -target m68k

You can override the default values for some targets using specific command-line options.
See the section Command-Line Options in Generic target options.

Related Examples
• “Specify Analysis Options”
• “Modify Predefined Target Processor Attributes”
• “Specify Generic Target Processors”

1-12

 Diab Compiler (-compiler diab)

Diab Compiler (-compiler diab)
Specify the Wind River Diab compiler

Description

Specify diab for Compiler if you compile your code using the Wind River Diab compiler.
By specifying your compiler, you can avoid compilation errors from syntax that is not
part of the Standard but comes from language extensions. The software supports version
5.9 and older versions of the Diab compiler.

Then, specify your target processor type. If you select diab for Compiler (-compiler), in
the user interface, you see only the processors allowed for the Diab compiler. Your choice
of target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

The targets use the following default sizes in bits for the fundamental types. Unlike
targets for other compilers, you do not see these sizes in the user interface.

Target char short int long long
long

float double long
double

ptr Default
sign of
char

EndiannessAlignment

i386 8 16 32 32 64 32 64 96 32 signed Little 32
powerpc 8 16 32 32 64 32 64 64 32 unsigned Big 64
arm 8 16 32 32 64 32 64 64 32 unsigned Big 64
coldfire 8 16 32 32 64 32 64 64 32 signed Big 64
mips 8 16 32 32 64 32 64 64 32 signed Big 64
mcore 8 16 32 32 64 32 64 64 32 unsigned Big 64
rh850 8 16 32 32 64 32 64 64 32 signed Little 32
superh 8 16 32 32 64 32 64 64 32 signed Big 64

1-13

1 Option Descriptions

Target char short int long long
long

float double long
double

ptr Default
sign of
char

EndiannessAlignment

tricore 8 16 32 32 64 32 64 64 32 signed Little 64
68k, sparc Not supported.

In addition, wchar_t is interpreted as unsigned short and size_t is interpreted as
unsigned int.

If you use Diab compiler flags to change any of these default specifications and want to
emulate these flags, contact Technical Support.

Tips

The Diab compiler provides keywords that are extensions of the C and C++ Standards.
You can disable a keyword by using Diab compiler options and use the keyword for an
identifier name. However, Polyspace does not allow you to disable the keyword.

To avoid compilation errors, it is recommended that you do not use a reserved keyword
for an identifier name in your code. For instance, the statement int pixel = 1; can
cause compilation errors because pixel is a reserved keyword. Some of the reserved
keywords are:

• asm, which introduces assembly-language statements.
• Vector-handing extensions such as bool, pixel, vec_step, and vector, which are

available on Altivec-capable targets only
• extended, which acts as an alias for long double
• Keywords such as inline, interrupt, packed and pascal, which control code

generation.

Command-Line Information
Parameter: -compiler diab -target
Value: i386 | powerpc | arm | coldfire | mips | mcore | rh850 |
superh | tricore

Default: powerpc

1-14

 Diab Compiler (-compiler diab)

Example: polyspace-bug-finder-nodesktop -compiler diab -target
tricore

See Also
Target processor type (-target) | Target processor type (-target)

Related Examples
• “Specify Analysis Options”

Introduced in R2016b

1-15

1 Option Descriptions

Generic target options
Specify size of data types and endianness by creating your own target processor

Description

The Generic target options dialog box opens when you set the Target processor type
to mcpu.

Allows the specification of a generic “Micro Controller/Processor Unit" target. Use the
dialog box to specify the name of a new mcpu target, for example MyTarget. That new
target is added to the Target processor type option list.

Changing the genetic target has consequences for:

• Detection of overflow
• Computation of sizeof objects

The Target processor type option is available on the Target & Compiler node in the
Configuration pane.

Settings

Default characteristics of a new target: listed as type [size, alignment]

• char [8, 8]
• short [16, 16]
• int [16, 16]
• long [32, 32]
• long long [32, 32]
• float [32, 32]
• double [32, 32]
• long double [32, 32]
• pointer [16,16]
• char is signed

1-16

 Generic target options

• alignment is little-endian

Dependency

A custom target can only be created when Target processor type (-target) is set to
mcpu.

A custom target is not available when Compiler (-compiler) is set to one of the
visual* options.

Command-Line Options

When using the command line, specify your target with the other target specification
options.

Option Description Available
With

Example

-little-endian Little-endian
architectures are
Less Significant
byte First (LSF). For
example: i386.

Specifies that the
less significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0xFF) and the
most significant byte
(0x00) at the second
byte.

mcpu polyspace-bug-finder-

nodesktop -target mcpu -

little-endian

-big-endian Big-endian
architectures are
Most Significant
byte First (MSF).
For example:
SPARC, m68k.

mcpu polyspace-bug-finder-

nodesktop -target mcpu -

big-endian

1-17

1 Option Descriptions

Option Description Available
With

Example

Specifies that the
most significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0x00) and the
less significant byte
(0xFF) at the second
byte.

-default-sign-of-char

[signed | unsigned]

Specify default sign
of char.

signed: Specifies
that char is signed,
overriding target’s
default.

unsigned: Specifies
that char is
unsigned, overriding
target’s default.

All targets polyspace-bug-finder-

nodesktop -default-sign-

of-char unsigned -target

mcpu

-char-is-16bits char defined as 16
bits and all objects
have a minimum
alignment of 16 bits

Incompatible with -
short-is-8bits

and -align 8

mcpu polyspace-bug-finder-

nodesktop -target mcpu -

char-is-16bits

-short-is-8bits Define short as 8
bits, regardless of
sign

mcpu polyspace-bug-finder-

nodesktop -target mcpu -

short-is-8bits

-int-is-32bits Define int as 32
bits, regardless of
sign. Alignment is
also set to 32 bits.

mcpu,
hc08, hc12,
mpc5xx

polyspace-bug-finder-

nodesktop -target mcpu -

int-is-32bits

1-18

 Generic target options

Option Description Available
With

Example

-long-is-32bits Define long as 32
bits, regardless of
sign. Alignment is
also set to 32 bits.

If your project sets
int to 64 bits, you
cannot use this
option.

All targets polyspace-bug-finder-

nodesktop -target mcpu -

long-is-32bits

-long-long-is-64bits Define long
long as 64 bits,
regardless of sign.
Alignment is also set
to 64 bits.

mcpu polyspace-bug-finder-

nodesktop -target mcpu -

long-long-is-64bits

-double-is-64bits Define double and
long double as 64
bits, regardless of
sign.

mcpu,
sharc21x61,
hc08, hc12,
mpc5xx

polyspace-bug-finder-

nodesktop -target mcpu -

double-is-64bits

-pointer-is-24bits Define pointer as 24
bits, regardless of
sign.

c18 polyspace-bug-finder-

nodesktop -target c18 -

pointer-is-24bits

-pointer-is-32bits Define pointer as 32
bits, regardless of
sign.

mcpu polyspace-bug-finder-

nodesktop -target mcpu -

pointer-is-32bits

1-19

1 Option Descriptions

Option Description Available
With

Example

-align [32|16|8] Specifies the largest
alignment of struct
or array objects to
the 32, 16 or 8 bit
boundaries.

Consequently, the
array or struct
storage is strictly
determined by the
size of the individual
data objects without
member and end
padding.

mcpu,

Only 16 or
32 bits for:
hc08, hc12,
mpc5xx

polyspace-bug-finder-

nodesktop -target mcpu -

align 16

Common Generic Targets

The following tables describe the characteristics of common generic targets.

ST7 (Hiware C compiler : HiCross for ST7)

ST7 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 32 32 16/32 unsignedBig
alignment 8 16/8 16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 N/A N/A

ST9 (GNU C compiler : gcc9 for ST9)

ST9 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 64 64 16/64 unsigned Big
alignment8 8 8 8 8 8 8 8 8 N/A N/A

Hitachi H8/300, H8/300L

1-20

 Generic target options

Hitachi
H8/300,
H8/300L

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/32 32 64 32 654 64 16 unsignedBig
alignment 8 16 16 16 16 16 16 16 16 N/A N/A

Hitachi H8/300H, H8S, H8C, H8/Tiny

Hitachi
H8/300H,
H8S,
H8C,
H8/Tiny

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/ 32 32 64 32 64 64 32 unsigned Big
alignment8 16 32/ 16 32/16 32/16 32/16 32/16 32/16 32/16 N/A N/A

See Also
Target processor type (-target)

Related Examples
• “Specify Generic Target Processors”
• “Common Generic Targets”

1-21

1 Option Descriptions

Respect C90 standard (-no-language-
extensions)
Restrict analysis to C language specified in ANSI C standard

Description

Restrict the analysis to the C language specified in the ANSI C standard (ISO/IEC
9899:1990). Language extensions added after the C90 standard will generate compilation
errors.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

 On
Restrict the analysis to the C90 standard. Code must conform to the ANSI C
standard (ISO/IEC 9899:1990).

 Off (default)
Allow C99 language extensions.

Dependencies

This option is available only when Source code language (-lang) is set to C or C-CPP.

If you enable this option, you cannot use Compiler (-compiler) settings keil and iar.

Command-Line Information
Parameter: -no-language-extensions
Default: off
Example: polyspace-bug-finder-nodesktop -lang c -no-language-
extensions

1-22

 Respect C90 standard (-no-language-extensions)

Introduced in R2015b

1-23

1 Option Descriptions

Sfr type support (-sfr-types)
Specify sfr types for code developed with Keil or IAR compilers

Description

Specify the sfr types.

If the code uses sfr keywords, you must declare each sfr type using this option.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

No Default

List each sfr name and its size in bits.

Dependency

This option is available only when Compiler (-compiler) is set to keil or iar.

Command-Line Information
Syntax: -sfr-types sfr_name=size_in_bits,...
No Default
Name Value: an sfr name such as sfrb.
Size Value: 8 | 16 | 32
Example: polyspace-bug-finder-nodesktop -lang c -compiler iar -sfr-
types sfr=8,sfr32=32,sfrb=16 ...

1-24

 Division round down (-div-round-down)

Division round down (-div-round-down)
Round down quotients from division or modulus of negative numbers instead of rounding
up

Description

Specify how division and modulus of negative numbers is interpreted by the analysis.

The ANSI standard stipulates that "if either operand of / or % is negative, whether the
result of the / operator, is the largest integer less or equal than the algebraic quotient or
the smallest integer greater or equal than the quotient, is implementation defined, same
for the sign of the % operator".

This option is available on the Target & Compiler node in the Configuration pane.

Note: a = (a / b) * b + a % b is always true.

Settings

 On
If either operand / or % is negative, the result of the / operator is the largest integer
less or equal than the algebraic quotient. The result of the % operator is deduced from
a % b = a - (a / b) * b.

Example: assert(-5/3 == -2 && -5%3 == 1); is true.
 Off (default)

If either operand of / or % is negative, the result of the / operator is the smallest
integer greater or equal than the algebraic quotient. The result of the % operator is
deduced from a % b = a - (a / b) * b

Example: assert(-5/3 == -1 && -5%3 == -2); is true.

Command-Line Information
Parameter: -div-round-down

1-25

1 Option Descriptions

Default: Off
Example: polyspace-bug-finder-nodesktop -div-round-down

1-26

 Enum type definition (-enum-type-definition)

Enum type definition (-enum-type-definition)
Specify how to represent an enum with a base type

Description

Allow the analysis to use different base types to represent an enumerated type,
depending on the enumerator values and the selected definition. When using this
option, each enum type is represented by the smallest integral type that can hold its
enumeration values.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

Default: defined-by-standard

defined-by-standard

Uses the signed integer type for all compilers except gnu.

For the gnu compilers, it uses the first type that can hold all of the enumerator
values from the following list: signed int, unsigned int, signed long,
unsigned long, signed long long, unsigned long long.

auto-signed-first

Uses the first type that can hold all of the enumerator values from the following list:
signed char, unsigned char, signed short, unsigned short, signed int,
unsigned int, signed long, unsigned long, signed long long, unsigned
long long.

auto-unsigned-first

Uses the first type that can hold all of the enumerator values from the following lists:

• If enumerator values are positive: unsigned char, unsigned short, unsigned
int, unsigned long, unsigned long long.

• If one or more enumerator values are negative: signed char, signed short,
signed int, signed long, signed long long.

1-27

1 Option Descriptions

Command-Line Information
Parameter: -enum-type-definition
Value: defined-by-standard | auto-signed-first | auto-unsigned-first
Default: defined-by-standard
Example: polyspace-bug-finder-nodesktop -enum-type-definition auto-
signed-first

1-28

 Signed right shift (-logical-signed-right-shift)

Signed right shift (-logical-signed-right-
shift)
Specify how to treat the sign bit for logical right shifts on signed variables

Description

Choose between arithmetical and logical computation.

This option does not modify compile-time expressions. For more details, see “Limitation”
on page 1-29.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

Default: Arithmetical

Arithmetical

The sign bit remains:

(-4) >> 1 = -2

(-7) >> 1 = -4

 7 >> 1 = 3

Logical

0 replaces the sign bit

(-4) >> 1 = (-4U) >> 1 = 2147483646

(-7) >> 1 = (-7U) >> 1 = 2147483644

 7 >> 1 = 3

Limitation

In compile-time expressions, this Polyspace option does not change the standard behavior
for right shifts.

1-29

1 Option Descriptions

For example, consider this right shift expression:

int arr[((-4) >> 20)];

The compiler computes array sizes, so the expression (-4) >> 20 is evaluated
at compilation time. Logically, this expression is equivalent to 4095. However,
arithmetically, the result is -1. This statements causes a compilation error (arrays cannot
have negative size) because the standard right-shift behavior for signed integers is
arithmetic.

Command-Line Information

When using the command line, arithmetic is the default computation mode. When this
option is set, logical computation is performed.
Parameter: -logical-signed-right-shift
Default: Arithmetic signed right shifts
Example: polyspace-bug-finder-nodesktop -logical-signed-right-shift

1-30

 Preprocessor definitions (-D)

Preprocessor definitions (-D)
Replace macros in preprocessed code

Description

Replace macros with their definitions in preprocessed code.

Use this option to emulate your compiler behavior. For instance, if your compiler
considers a macro _WIN32 as defined when you build your code, it executes code in a
#ifdef _WIN32 statement. If Polyspace does not consider that macro as defined, you
must use this option to replace the macro with 1.

Depending on your settings for Compiler (-compiler), some macros are defined by
default. Use this option to define macros that are not already defined.

This option is available on the Macros node in the Configuration pane.

Settings

No Default

Using the button, add a row for the macro you want to define. The definition must be
in the format Macro=Value. If you want Polyspace to ignore the macro, leave the Value
blank.

For example:

• name1=name2 replaces all instances of name1 by name2.
• name= instructs the software to ignore name.
• name with no equals sign or value replaces all instances of name by 1.

Tips

Sometimes, your source code contains non-ANSI extension keywords. Although your
compiler supports the keywords, Polyspace does not support them. To avoid compilation

1-31

1 Option Descriptions

errors caused by an unsupported keyword, use this option to replace all occurrences of
the keyword with a blank string in preprocessed code. The replacement occurs only for
the purposes of the analysis. Your original source code remains intact.

For example, if your compiler supports the __far keyword, to avoid compilation errors:

• In the user interface, enter __far=.
• On the command line, use the flag -D __far.

The software replaces the __far keyword with a blank string during preprocessing. For
example:

int __far* pValue;

is converted to:

int * pValue;

Command-Line Information

You can specify only one flag with each -D option. However, you can specify the option
multiple times.
Parameter: -D
No Default
Value: flag=value
Example: polyspace-bug-finder-nodesktop -D HAVE_MYLIB -D int32_t=int

See Also
Disabled preprocessor definitions (-U)

1-32

 Disabled preprocessor definitions (-U)

Disabled preprocessor definitions (-U)
Undefine macros in preprocessed code

Description

Undefine macros in preprocessed code.

Use this option to emulate your compiler behavior. For instance, if your compiler
considers a macro _WIN32 as undefined when you build your code, it does not execute
code in a #ifdef _WIN32 statement. If Polyspace considers that macro as defined, you
must explicitly undefine the macro.

Some settings for Compiler (-compiler) enable certain macros by default. This option
allows you undefine the macros.

This option is available on the Macros node in the Configuration pane.

Settings

No Default

Using the button, add a new row for each macro being undefined.

Command-Line Information

You can specify only one flag with each -U option. However, you can specify the option
multiple times.
Parameter: -U
No Default
Value: macro
Example: polyspace-bug-finder-nodesktop -U HAVE_MYLIB -U USE_COM1

See Also
Preprocessor definitions (-D)

1-33

1 Option Descriptions

Code from DOS or Windows file system (-dos)
Consider that file paths are in MS-DOS style

Description

Specify that DOS or Windows® files are in analysis.

Use this options if the contents of the Include or Source folder come from a DOS or
Windows file system. It deals with upper/lower case sensitivity and control character
issues.

This option is available on the Environment Settings node in the Configuration
pane.

Settings

 On (default)
Analysis understands file names and include paths for Windows/DOS files

For example, with this option,

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

resolves to:

#include "../my_test.h"

#include "../my_other_file.h"

 Off
Characters are not controlled for files names or paths.

Command-Line Information
Parameter: -dos

1-34

 Code from DOS or Windows file system (-dos)

Default: Off
Example: polyspace-bug-finder-nodesktop -dos -I ./
my_copied_include_dir -D test=1

1-35

1 Option Descriptions

Command/script to apply to preprocessed files (-
post-preprocessing-command)
Specify command or script to run on source files after preprocessing

Description
Specify a command or script to run on each source file after the preprocessing phase.

The command must be designed to process the standard output from preprocessing and
produce its results in accordance with that standard output. Additionally, It is important
to preserve the number of lines in the preprocessed file. Adding a line or removing one
could result in some unpredictable behavior on the location of checks and macros in the
Polyspace user interface.

This option is available on the Environment Settings node in the Configuration
pane.

Note: The Compilation Assistant is automatically disabled when you specify this option.

Settings
No Default

Enter full path to the command or script, or click to navigate to the location of the
command or script. After the verification, this script will be executed.

Tips
• For a Perl script, in Windows, specify the full path to the Perl executable followed by

the full path to the script.

For example:

• To specify a Perl command that replaces all instances of the far keyword, enter
matlabroot\sys\perl\win32\bin\perl.exe -p -e "s/far//g".

1-36

 Command/script to apply to preprocessed files (-post-preprocessing-command)

• To specify a Perl script replace_keyword.pl that replaces all instances
of a keyword, enter matlabroot\sys\perl\win32\bin\perl.exe
<absolute_path>\replace_keyword.pl.

Here, matlabroot is the location of the current MATLAB® installation such as C:
\Program Files\MATLAB\R2015b\ and <absolute_path> is the location of the
Perl script.

• Use this Perl script as template. The script removes all instances of the far keyword.

#!/usr/bin/perl

binmode STDOUT;

Process every line from STDIN until EOF

while ($line = <STDIN>)

{

 # Remove far keyword

 $line =~ s/far//g;

 # Print the current processed line to STDOUT

 print $line;

}

You can use Perl regular expressions to perform substitutions. For instance, you can
use the following expressions.

Expression Meaning

. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in the set 0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For complete list of regular expressions, see Perl documentation.
1-37

http://perldoc.perl.org/perlre.html#Regular-Expressions

1 Option Descriptions

Command-Line Information
Parameter: -post-preprocessing-command
Value: Path to executable file or command in quotes
No Default
Example in Linux®: polyspace-bug-finder-nodesktop -sources file_name -
post-preprocessing-command `pwd`/replace_keyword.pl

Example in Windows: polyspace-bug-finder-nodesktop -sources file_name
-post-preprocessing-command "C:\Program Files\MATLAB\R2015b\sys\perl

\win32\bin\perl.exe" "C:\My_Scripts\replace_keyword.pl"

See Also
Command/script to apply after the end of the code verification (-post-analysis-
command)

Related Examples
• “Specify Analysis Options”

1-38

 Include (-include)

Include (-include)
Specify files to be #include-ed by each C file in analysis

Description

Specify files to be included by each C file involved in the analysis.

This option is available on the Environment Settings node in the Configuration pane

Settings

No Default

Specify the file name to be included in every file involved in the analysis.

Polyspace still acts on other directives such as #include <include_file.h>.

Tips

If you have compilation problems because Polyspace does not recognize certain keywords
specific to your compiler, you can define the keywords in a header file and provide the
header file with this option.

Command-Line Information
Parameter: -include
Default: None
Value: file (Use -include multiple times for multiple files)
Example: polyspace-bug-finder-nodesktop -include `pwd`/sources/
a_file.h -include /inc/inc_file.h

1-39

1 Option Descriptions

Include folders (-I)
View include folders used for analysis

Description

View the include folders used for analysis.

• To add include folders, on the Project Browser, right-click your project. Select Add
Source.

• To view the include folders that you used, with your results open, select Window >
Show/Hide View > Configuration. Under the node Environment Settings, you
see the folders listed under Include folders.

Settings

This is a read-only option available only when viewing results. Unlike other options, you
do not specify include folders on the Configuration pane. Instead, you add your include
folders on the Project Browser pane.

Command-Line Information
Parameter: -I
Value: Folder name
Example: polyspace-bug-finder-nodesktop -I /com1/inc -I /com1/sys/inc

See Also
-I | Include (-include)

1-40

 Constraint setup (-data-range-specifications)

Constraint setup (-data-range-
specifications)
Constrain global variables, function inputs and return values of stubbed functions

Description

Specify constraints (also known as data range specifications or DRS) for global
variables, function inputs and return values of stubbed functions using a Constraint
Specification template file. The template file is an XML file that you can generate in the
Polyspace user interface.

This option is available on the Inputs & Stubbing node in the Configuration pane.

Settings

No Default

Enter full path to the template file. Alternately, click to open a Constraint
Specification wizard. This wizard allows you to generate a template file or navigate to
an existing template file.

For more information, see “Specify External Constraints”.

Command-Line Information
Parameter: -data-range-specifications
Value: file
No Default
Example: polyspace-code-prover-nodesktop -sources file_name -data-
range-specifications "C:\DRS\range.xml"

See Also
Functions to stub (-functions-to-stub)

1-41

1 Option Descriptions

Related Examples
• “Specify Analysis Options”

More About
• “Constraints”

1-42

 Functions to stub (-functions-to-stub)

Functions to stub (-functions-to-stub)
Specify functions to stub during analysis

Description

Specify functions to stub during analysis.

This option is available only for projects with automatically generated code. It is located
on the Inputs & Stubbing node in the Configuration pane.

For specified functions, Polyspace :

• Ignores the function definition even if it exists.
• Assumes that the function inputs and outputs have full range of values allowed by

their type.

Settings

No Default

Click to add a field and enter the function name.

When entering function names, use either the basic syntax or, to differentiate overloaded
functions, the argument syntax. For the argument syntax, separate function arguments
with semicolons. See the following table for examples.

Function Type Basic Syntax Argument Syntax

Simple function test test()

C++ class method A::test A::test(int;int)

C++ template method A<T>::test A<T>::test<T>::test(T;T)

Command-Line Information
Parameter: -functions-to-stub

1-43

1 Option Descriptions

No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -
functions-to-stub function_1,function_2

See Also
Constraint setup (-data-range-specifications)

Related Examples
• “Specify Analysis Options”

1-44

 Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)

Generate stubs for Embedded Coder lookup tables
(-stub-embedded-coder-lookup-table-
functions)
Stub autogenerated functions that use lookup tables and model them more precisely

Description

This option is available only for model-generated code. The option is relevant only if you
generate code from a Simulink® model that uses Lookup Table blocks using MathWorks
code generation products.

If you select this option, the verification stubs functions containing lookup tables and
models their effect more precisely in the remaining code. The option is more effective if
you are running a verification in Polyspace Code Prover™. For more information, see
Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-
functions) in Code Prover documentation.

Introduced in R2016b

1-45

1 Option Descriptions

Generate results for sources and (-generate-
results-for)
Specify files on which you want analysis results

Description

Specify files on which you want analysis results.

This option is available on the Inputs & Stubbing node in the Configuration pane.

Settings

Default: source-headers

source-headers

Results appear on source files and header files in the same folder as the source files
or in subfolders of source file folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

all-headers

Results appear on source files and all header files. The header files can be in the
same folder as source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

custom

Results appear on source files and the files that you specify. If you enter a folder
name, results appear on header files in that folder.

Click to add a field. Enter a file or folder name.

1-46

 Generate results for sources and (-generate-results-for)

Tips

1 Use this option in combination with appropriate values for the option Do not
generate results for (-do-not-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific
value determines the display of results. For instance, in the following examples, the
value for the option Generate results for sources and is more specific.

Generate results for sources
and

Do not generate results for Final Result

custom:

C:\Includes

\Custom_Library\

custom:

C:\Includes

Results are displayed
on header files
in C:\Includes
\Custom_Library\

but not generated for
other header files in
C:\Includes and its
subfolders.

custom:

C:\Includes

\my_header.h

custom:

C:\Includes\

Results are displayed
on the header file
my_header.h in C:
\Includes\ but not
generated for other header
files in C:\Includes\ and
its subfolders.

Using these two options together, you can suppress results from all files in a certain
folder but unsuppress select files in those folders.

2 If you choose all-headers for this option, results are displayed on all header files
irrespective of what you specify for the option Do not generate results for.

Command-Line Information
Parameter: -generate-results-for
Value: all-headers | custom=file1[,file2[,...]] |
folder1[,folder2[,...]]

1-47

1 Option Descriptions

Example: polyspace-bug-finder-nodesktop -lang c -sources file_name -
misra2 required-rules -generate-results-for "C:\usr\include"

Related Examples
• “Exclude Files from Analysis”

Introduced in R2016a

1-48

 Do not generate results for (-do-not-generate-results-for)

Do not generate results for (-do-not-generate-
results-for)
Specify files on which you do not want analysis results

Description

Specify files on which you do not want analysis results.

This option is available on the Inputs & Stubbing node in the Configuration pane.

Settings

Default: include-folders

include-folders

Results are not generated for header files in include folders.

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

all-headers

Results are not generated for all header files. The header files can be in the same
folder as source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

custom

Results are not generated for the files that you specify. If you enter a folder name,
results are suppressed from files in that folder.

Click to add a field. Enter a file or folder name.

1-49

1 Option Descriptions

Tips

1 Use this option appropriately in combination with appropriate values for the option
Generate results for sources and (-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific
value determines the display of results. For instance, in the following examples, the
value for the option Generate results for sources and is more specific.

Generate results for sources
and

Do not generate results for Final Result

custom:

C:\Includes

\Custom_Library\

custom:

C:\Includes

Results are displayed
on header files
in C:\Includes
\Custom_Library\

but not generated for
other header files in
C:\Includes and its
subfolders.

custom:

C:\Includes

\my_header.h

custom:

C:\Includes\

Results are displayed
on the header file
my_header.h in C:
\Includes\ but not
generated for other header
files in C:\Includes\ and
its subfolders.

Using these two options together, you can suppress results from all files in a certain
folder but unsuppress select files in those folders.

2 If you choose all-headers for this option, results are suppressed from all header
files irrespective of what you specify for the option Generate results for sources
and.

3 If a defect or coding rule violation involves two files and you do not generate results
for one of the files, the defect or rule violation still appears. For instance, if you
define two variables with similar-looking names in files myFile.cpp and myFile.h,
you get a violation of the MISRA® C++ rule 2-10-1, even if you do not generate
results for myFile.h. MISRA C++ rule 2-10-1 states that different identifiers must
be typographically unambiguous.

1-50

 Do not generate results for (-do-not-generate-results-for)

The following results can involve more than one file:

MISRA C: 2004 Rules

• MISRA C®: 2004 Rule 5.1 — Identifiers (internal and external) shall not rely on
the significance of more than 31 characters.

• MISRA C: 2004 Rule 5.2 — Identifiers in an inner scope shall not use the same
name as an identifier in an outer scope, and therefore hide that identifier.

• MISRA C: 2004 Rule 8.8 — An external object or function shall be declared in one
file and only one file.

• MISRA C: 2004 Rule 8.9 — An identifier with external linkage shall have exactly
one external definition.

MISRA C: 2012 Directives and Rules

• MISRA C: 2012 Directive 4.5 — Identifiers in the same name space with
overlapping visibility should be typographically unambiguous.

• MISRA C: 2012 Rule 5.2 — Identifiers declared in the same scope and name
space shall be distinct.

• MISRA C: 2012 Rule 5.3 — An identifier declared in an inner scope shall not hide
an identifier declared in an outer scope.

• MISRA C: 2012 Rule 5.4 — Macro identifiers shall be distinct.
• MISRA C: 2012 Rule 5.5 — Identifiers shall be distinct from macro names.
• MISRA C: 2012 Rule 8.5 — An external object or function shall be declared once

in one and only one file.
• MISRA C: 2012 Rule 8.6 — An identifier with external linkage shall have exactly

one external definition.

MISRA C++ Rules

• MISRA C++ Rule 2-10-1 — Different identifiers shall be typographically
unambiguous.

• MISRA C++ Rule 2-10-2 — Identifiers declared in an inner scope shall not hide
an identifier declared in an outer scope.

• MISRA C++ Rule 3-2-2 — The One Definition Rule shall not be violated.

1-51

1 Option Descriptions

• MISRA C++ Rule 3-2-3 — A type, object or function that is used in multiple
translation units shall be declared in one and only one file.

• MISRA C++ Rule 3-2-4 — An identifier with external linkage shall have exactly
one definition.

• MISRA C++ Rule 7-5-4 — Functions should not call themselves, either directly or
indirectly.

• MISRA C++ Rule 15-4-1 — If a function is declared with an exception-
specification, then all declarations of the same function (in other translation
units) shall be declared with the same set of type-ids.

JSF C++ Rules

• JSF C++ Rule 46 — User-specified identifiers (internal and external) will not rely
on significance of more than 64 characters.

• JSF C++ Rule 48 — Identifiers will not differ by only a mixture of case, the
presence/absence of the underscore character, the interchange of the letter O with
the number 0 or the letter D, the interchange of the letter I with the number 1 or
the letter l, the interchange of the letter S with the number 5, the interchange of
the letter Z with the number 2 and the interchange of the letter n with the letter
h.

• JSF C++ Rule 137 — All declarations at file scope should be static where possible.
• JSF C++ Rule 139 — External objects will not be declared in more than one file.

Polyspace Bug Finder Defects

• Variable shadowing — Variable hides another variable of same name with nested
scope.

• Declaration mismatch — Mismatch occurs between function or variable
declarations.

Command-Line Information
Parameter: -do-not-generate-results-for
Value: all-headers | custom=file1[,file2[,...]] |
folder1[,folder2[,...]]

Example: polyspace-bug-finder-nodesktop -lang c -sources file_name -
misra2 required-rules -do-not-generate-results-for "C:\usr\include"

1-52

 Do not generate results for (-do-not-generate-results-for)

Related Examples
• “Exclude Files from Analysis”

Introduced in R2016a

1-53

1 Option Descriptions

Disable automatic concurrency detection (-
disable-concurrency-detection)
Disable automatic detection of POSIX and VxWorks threading functions

Description

Deactivate the automatic concurrency detection for POSIX® and VxWorks threading
functions. This option turns off the automatic multitasking detection. If you want to
manually model your multitasking program, see Configure multitasking manually.

This option is on the Multitasking node in the Configuration pane.

Settings

 On
Do not detect multitasking in your code.

If you want to manually configure your multitasking model, see Configure
multitasking manually.

 Off (default)
Use thread primitives to automatically detect your program’s multitasking model.

Supported POSIX primitives are:

• pthread_create

• pthread_mutex_lock

• pthread_mutex_unlock

Supported VxWorks® primitives are:

• taskSpawn

• semTake

• semGive

1-54

 Disable automatic concurrency detection (-disable-concurrency-detection)

To activate automatic detection of concurrency primitives for VxWorks, use the
VxWorks template. For more information on templates, see “Create Project Using
Configuration Template”.

Command-Line Information
Parameter: -disable-concurrency-detection
Example: polyspace-bug-finder-nodesktop -sources file_name -disable-
concurrency-detection

See Also
Entry points (-entry-points) | Critical section details (-critical-section-begin
-critical-section-end) | Temporally exclusive tasks (-temporal-exclusions-
file)

Related Examples
• “Modeling Multitasking Code”
• “Set Up Multitasking Analysis Manually”

1-55

1 Option Descriptions

Configure multitasking manually
Consider that code is intended for multitasking

Description

Specify whether your code is a multitasking application. This option allows you to
manually configure the multitasking structure for Polyspace. If you use POSIX or
VxWorks pthread primitives, Polyspace can detect the multitasking. See Disable
automatic concurrency detection (-disable-concurrency-detection).

This option is on the Multitasking node in the Configuration pane.

Settings

 On
The code is intended for a multitasking application.

 Off (default)
The code is not intended for a multitasking application.

Command-Line Information

There is no single command-line option to turn on multitasking analysis. By using the -
entry-points option, you turn on multitasking analysis.

See Also
Disable automatic concurrency detection (-disable-concurrency-detection) |
Entry points (-entry-points) | Critical section details (-critical-section-begin
-critical-section-end) | Temporally exclusive tasks (-temporal-exclusions-
file)

Related Examples
• “Set Up Multitasking Analysis Manually”

1-56

 Entry points (-entry-points)

Entry points (-entry-points)
Specify functions that serve as entry points to your multitasking application

Description

Specify functions that serve as entry points to your code. If the function does not exist,
the verification warns you and continues the verification. Use this option when your code
is intended for multitasking.

This option is available on the Multitasking node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name.

Dependencies

To enable this option, you must have the following options selected in your project
configuration:

• Configure multitasking manually

Tips

Command-Line Information
Parameter: -entry-points
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -entry-
points func_1,func_2

1-57

1 Option Descriptions

See Also
Critical section details (-critical-section-begin -critical-section-end) |
Temporally exclusive tasks (-temporal-exclusions-file)

Related Examples
• “Specify Analysis Options”
• “Set Up Multitasking Analysis Manually”

1-58

 Cyclic tasks (-cyclic-tasks)

Cyclic tasks (-cyclic-tasks)
Specify functions that represent cyclic tasks

Description

Specify functions that represent cyclic tasks. The analysis assumes that operations in the
function body:

• Can execute any number of times.
• Can be interrupted by noncyclic entry points, other cyclic tasks and interrupts.

To model a cyclic task that cannot be interrupted by other cyclic tasks, specify the
task as nonpreemptable. See -non-preemptable-tasks.

Use this option when your code is intended for multitasking. The functions that you
specify must have the prototype:

void function_name(void);

The analysis uses your specifications to look for concurrency defects. For the Data race
defect, the software establishes the following relations between preemptable tasks and
other tasks.

• Data race between two preemptable tasks:

Unless protected, two operations in different preemptable tasks can interfere with
each other. If the operations use the same shared variable without protection, a data
race can occur.

If both operations are atomic, to see the defect, you have to enable Data race including
atomic operations.

• Data race between a preemptable task and a nonpreemptable task or interrupt:

• An atomic operation in a preemptable task cannot interfere with an operation in a
nonpreemptable task or an interrupt. Even if the operations use the same shared
variable without protection, a data race cannot occur.

• A nonatomic operation in a preemptable task also cannot interfere with an
operation in a nonpreemptable task or an interrupt. However, the latter operation

1-59

1 Option Descriptions

can interrupt the former. Therefore, if the operations use the same shared variable
without protection, a data race can occur.

For more information, see “Concurrency Defects”.

This option is available on the Multitasking node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name.

Dependencies

To enable this option, you must have the option Configure multitasking manually
selected in your project configuration.

Command-Line Information
Parameter: -cyclic-tasks
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -cyclic-
tasks func_1,func_2

See Also
-preemptable-interrupts | -non-preemptable-tasks | Interrupts (-
interrupts) | Entry points (-entry-points) | Critical section details (-critical-
section-begin -critical-section-end) | Temporally exclusive tasks (-
temporal-exclusions-file)

Related Examples
• “Specify Analysis Options”
• “Set Up Multitasking Analysis Manually”

1-60

 Cyclic tasks (-cyclic-tasks)

Introduced in R2016b

1-61

1 Option Descriptions

Interrupts (-interrupts)
Specify functions that represent nonpreemptable interrupts

Description

Specify functions that represent nonpreemptable interrupts. The analysis assumes that
operations in the function body:

• Can execute any number of times.
• Cannot be interrupted by noncyclic entry points, cyclic tasks or other interrupts.

To model an interrupt that can be interrupted by other interrupts, specify the
interrupt as preemptable. See -preemptable-interrupts.

Use this option when your code is intended for multitasking. The functions that you
specify must have the prototype:

void function_name(void);

The analysis uses your specifications to look for concurrency defects. For the Data race
defect, the analysis establishes the following relations between interrupts and other
tasks:

• Dace race between two interrupts:

Two operations in different interrupts cannot interfere with each other (unless one of
the interrupts is preemptable). Even if the operations use the same shared variable
without protection, a data race cannot occur.

• Data race between an interrupt and another task:

• An operation in an interrupt cannot interfere with an atomic operation in any
other task. Even if the operations use the same shared variable without protection,
a data race cannot occur.

• An operation in an interrupt can interfere with a nonatomic operation in any other
task unless the other task is also a nonpreemptable interrupt. Therefore, if the
operations use the same shared variable without protection, a data race can occur.

See “Concurrency Defects”.

1-62

 Interrupts (-interrupts)

This option is available on the Multitasking node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name.

Dependencies

To enable this option, you must have the following options selected in your project
configuration:

• Configure multitasking manually

Command-Line Information
Parameter: -interrupts
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -
interrupts func_1,func_2

See Also
-preemptable-interrupts | -non-preemptable-tasks | Cyclic tasks (-cyclic-
tasks) | Entry points (-entry-points) | Critical section details (-critical-
section-begin -critical-section-end) | Temporally exclusive tasks (-
temporal-exclusions-file)

Related Examples
• “Specify Analysis Options”
• “Set Up Multitasking Analysis Manually”

Introduced in R2016b

1-63

1 Option Descriptions

Critical section details (-critical-section-
begin -critical-section-end)

Specify functions that begin and end critical sections

Description

When verifying multitasking code, Polyspace considers that a critical section lies between
calls to a lock function and an unlock function. Specify the two function names.

When a task my_task calls a lock function my_lock, other tasks calling my_lock must
wait until my_task calls the corresponding unlock function.

The analysis uses the critical section information to look for concurrency defects such as
data race and deadlock. See “Concurrency Defects”.

This option is available on the Multitasking node in the Configuration pane.

Settings

No Default

Click to add a field.

• In Starting procedure, enter name of lock function.
• In Ending procedure, enter name of unlock function.

Dependencies

To enable this option, you must have the following options selected in your project
configuration:

• Configure multitasking manually

1-64

 Critical section details (-critical-section-begin -critical-section-end)

Tips

• For function calls that begin and end critical sections, Polyspace ignores the function
arguments.

For instance, Polyspace treats the two code sections below as the same critical section.

Starting procedure: func_begin Starting procedure: func_begin
Ending procedure: func_end Ending procedure: func_end
void my_task() {

 my_lock(1);

 /* Critical section code */

 my_unlock(1);

}

void my_task() {

 my_lock(2);

 /* Critical section code */

 my_unlock(2);

}

Command-Line Information
Parameter: -critical-section-begin | -critical-section-end
No Default
Value: function1:cs1[,function2:cs2[,...]]
Example: polyspace-bug_finder-nodesktop -sources file_name -critical-
section-begin func_begin:cs1 -critical-section-end func_end:cs1

See Also
Configure multitasking manually | Entry points (-entry-points) | Temporally
exclusive tasks (-temporal-exclusions-file) | Data race | Data race including
atomic operations

Related Examples
• “Specify Analysis Options”
• “Set Up Multitasking Analysis Manually”

1-65

1 Option Descriptions

Temporally exclusive tasks (-temporal-
exclusions-file)
Specify entry point functions that cannot execute concurrently

Description

Specify entry point functions that cannot execute concurrently. The execution of the
functions cannot overlap with each other. Use this option to implement temporal
exclusion in multitasking code.

The analysis uses the temporal exclusion information to look for concurrency defects such
as data race. See Data race.

This option is available on the Multitasking node in the Configuration pane.

Settings

No Default

Click to add a field. In each field, enter a space-separated list of functions. Polyspace
considers that the functions in the list cannot execute concurrently.

Dependencies

To enable this option, you must have the following options selected in your project
configuration:

• Configure multitasking manually

Command-Line Information

For the command-line option, create a temporal exclusions file in the following format:

1-66

 Temporally exclusive tasks (-temporal-exclusions-file)

• On each line, enter one group of temporally excluded tasks.
• Within a line, the tasks are separated by spaces.

Parameter: -temporal-exclusions-file
No Default
Value: Name of temporal exclusions file
Example: polyspace-bug-finder-nodesktop -sources file_name -temporal-
exclusions-file "C:\exclusions_file.txt"

See Also
Configure multitasking manually | Entry points (-entry-points) | Critical section
details (-critical-section-begin -critical-section-end) | Data race | Data
race including atomic operations

Related Examples
• “Specify Analysis Options”
• “Set Up Multitasking Analysis Manually”

1-67

1 Option Descriptions

Check MISRA C:2004 (-misra2)

Check for violation of MISRA C:2004 rules

Description

Specify whether to check for violation of MISRA C:2004 rules. Each value of the option
corresponds to a subset of rules to check. For projects with mixed C and C++ code, the
MISRA C:2004 checker analyzes only .c files.

After analysis, the Results List pane lists the coding rule violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

This option is available on the Coding Rules & Code Metrics node in the
Configuration pane.

Settings

Default: required-rules

required-rules

Check required coding rules.
all-rules

Check required and advisory coding rules.
SQO-subset1

Check only a subset of MISRA C rules. In Polyspace Code Prover, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C:2004)”.

SQO-subset2

Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets
(C:2004)”.

1-68

 Check MISRA C:2004 (-misra2)

custom

Specify coding rules to check. Click to create a coding rules file. After
creating and saving the file, to reuse it for another project, do one of the following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:

rule number off|on

Use # to enter comments in the file. For example:

10.5 off # rule 10.5: type conversion

17.2 on # rule 17.2: pointers

single-unit-rules

Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules

Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration
level because the rules involve more than one translation unit. These rules are
checked in the compilation and linking phases of the analysis.

Dependencies

• This option is available only if you set Source code language (-lang) to C or C-CPP.
• If you set Source code language (-lang) to C-CPP, you can activate a C coding rule

checker and a C++ coding rule checker. When you have both C and C++ coding rule
checkers active, to avoid duplicate results, Polyspace does not produce the C coding
rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips

• To reduce unproven results in Polyspace Code Prover:

1-69

1 Option Descriptions

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information
Parameter: -misra2
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | single-
unit-rules | system-decidable-rules | file
Default: required-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -misra2
all-rules

See Also
Generate results for sources and (-generate-results-for)

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”
• “Select Specific MISRA or JSF Coding Rules”

More About
• “Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
• “Software Quality Objective Subsets (C:2004)”

1-70

 Check MISRA AC AGC (-misra-ac-agc)

Check MISRA AC AGC (-misra-ac-agc)

Check for violation of MISRA AC AGC rules

Description

Specify whether to check for violation of rules specified by MISRA AC AGC Guidelines
for the Application of MISRA-C:2004 in the Context of Automatic Code Generation. Each
value of the option corresponds to a subset of rules to check. For projects with mixed C
and C++ code, the MISRA AC AGC checker analyzes only .c files.

After analysis, the Results List pane lists the coding rule violations. On the Source
pane, for every coding rule violation, assigns a symbol to the keyword or identifier
relevant to the violation.

This option is available on the Coding Rules & Code Metrics node in the
Configuration pane.

Settings

Default: OBL-rules

OBL-rules

Check required coding rules.
OBL-REC-rules

Check required and recommended rules.
all-rules

Check required, recommended and readability-related rules.
SQO-subset1

Check a subset of rules. In Polyspace Code Prover, observing these rules can reduce
the number of unproven results. For more information, see “Software Quality
Objective Subsets (AC AGC)”.

SQO-subset2

1-71

1 Option Descriptions

Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (AC
AGC)”.

custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:
rule number off|on

Use # to enter comments in the file. For example:

10.5 off # rule 10.5: type conversion

17.2 on # rule 17.2: pointers

single-unit-rules

Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

This setting is not available from the drop-down list in the user interface. To choose
this setting, enter the option -misra-ac-agc single-unit-rules in the field
Other.

system-decidable-rules

Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration
level because the rules involve more than one translation unit. These rules are
checked in the compilation and linking phases of the analysis.

This setting is not available from the drop-down list in the user interface. To choose
this setting, enter the option -misra-ac-agc system-decidable-rules in the
field Other.

1-72

 Check MISRA AC AGC (-misra-ac-agc)

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.
• If you set Source code language (-lang) to C-CPP, you can activate a C coding rule

checker and a C++ coding rule checker. When you have both C and C++ coding rule
checkers active, to avoid duplicate results, Polyspace does not produce the C coding
rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information
Parameter: -misra-ac-agc
Value: OBL-rules | OBL-REC-rules | all-rules | SQO-subset1 | SQO-subset2 |
single-unit-rules | system-decidable-rules | file
Default: OBL-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -misra-ac-
agc all-rules

See Also
Generate results for sources and (-generate-results-for)

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”

1-73

1 Option Descriptions

• “Select Specific MISRA or JSF Coding Rules”

More About
• “Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
• “MISRA C:2004 and MISRA AC AGC Coding Rules”
• “Software Quality Objective Subsets (AC AGC)”

1-74

 Check MISRA C:2012 (-misra3)

Check MISRA C:2012 (-misra3)
Check for violations of MISRA C:2012 rules and directives

Description

Specify whether to check for violations of MISRA C:2012 guidelines. Each value of the
option corresponds to a subset of guidelines to check. For projects with mixed C and C++
code, the MISRA C:2012 checker analyzes only .c files.

After analysis, the Results List pane lists the coding rule violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

This option is available on the Coding Rules & Code Metrics node in the
Configuration pane.

Settings

Default: mandatory-required

mandatory-required

Check mandatory and required guidelines.
mandatory

Check mandatory guidelines.
all

Check mandatory, required, and advisory guidelines.
SQO-subset1

Check only a subset of guidelines. In Polyspace Code Prover, observing these rules
can reduce the number of unproven results. For more information, see “Software
Quality Objective Subsets (C:2012)”.

SQO-subset2

Check a subset of guidelines, SQO-subset1, plus some additional rules. In Polyspace
Code Prover, observing these rules can further reduce the number of unproven
results. For more information, see “Software Quality Objective Subsets (C:2012)”.

1-75

1 Option Descriptions

custom

Specify guidelines to check. Click to create a coding rules file. Save the file.
To reuse it for another project, do one of the following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Custom file format:

rule number off|on

Use # to enter comments in the file. For example:

10.5 off # rule 10.5: essential type model

17.2 on # rule 17.2: functions

single-unit-rules

Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules

Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration
level because the rules involve more than one translation unit. These rules are
checked in the compilation and linking phases of the analysis.

Dependencies

• This option is available only if you set Source code language (-lang) to C or C-CPP.
• If you set Source code language (-lang) to C-CPP, you can activate a C coding rule

checker and a C++ coding rule checker. When you have both C and C++ coding rule
checkers active, to avoid duplicate results, Polyspace does not produce the C coding
rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips

• To reduce unproven results in Polyspace Code Prover:

1-76

 Check MISRA C:2012 (-misra3)

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information
Parameter: -misra3
Value: mandatory | mandatory-required | all | SQO-subset1 | SQO-subset2 |
single-unit-rules | system-decidable-rules | file
Default: mandatory-required
Example: polyspace-bug-finder-nodesktop -lang c -sources file_name -
misra3 mandatory-required

See Also
Generate results for sources and (-generate-results-for)

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”
• “Select Specific MISRA or JSF Coding Rules”

More About
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

1-77

1 Option Descriptions

Use generated code requirements (-misra3-agc-
mode)
Check for violations of MISRA C:2012 rules and directives that apply to generated code

Description

Specify whether to use the MISRA C:2012 categories for automatically generated code.
This option changes which rules are mandatory, required, or advisory.

This option is available on the Coding Rules & Code Metrics node in the
Configuration pane.

Settings

 Off (default)
Use the normal categories (mandatory, required, advisory) for MISRA C:2012 coding
guideline checking.

 On (default for analyses from Simulink)
Use the generated code categories (mandatory, required, advisory, readability) for
MISRA C:2012 coding guideline checking.

For analyses started from the Simulink plug-in, this option is the default value.

Category changed to Advisory

These rules are changed to advisory:

• 5.3
• 7.1
• 8.4, 8.5, 8.14
• 10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8
• 14.4, 14.4
• 15.2, 15.3

1-78

 Use generated code requirements (-misra3-agc-mode)

• 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7
• 20.8

Category changed to Readability

These guidelines are changed to readability:

• Dir 4.5
• 2.3, 2.4, 2.5, 2.6, 2.7
• 5.9
• 7.2, 7.3
• 9.2, 9.3, 9.5
• 11.9
• 13.3
• 14.2
• 15.7
• 17.5, 17.7, 17.8
• 18.5
• 20.5

Dependency

To use this option, first select the Check MISRA C:2012 (-misra3) option.

Command-Line Information
Parameter: -misra3-agc-mode
Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -misra3
all -misra3-agc-mode

See Also
Generate results for sources and (-generate-results-for) | Check MISRA C:2012 (-
misra3)

1-79

1 Option Descriptions

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”

More About
• “Polyspace MISRA C:2012 Checker”

1-80

 Check custom rules (-custom-rules)

Check custom rules (-custom-rules)

Follow naming conventions for identifiers

Description

Define naming conventions for identifiers and check your code against them.

After analysis, the Results List pane lists violations of the naming conventions. On
the Source pane, for every violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

This option is available on the Coding Rules & Code Metrics node in the
Configuration pane.

Settings

 On
Polyspace matches identifiers in your code against text patterns you define. Define
the text patterns in a custom coding rules file. To create a coding rules file,

• Use the custom rules wizard:

1
Click . The New File window opens.

2 From the drop-down list Set the following state to all Custom C, select
Off. Click Apply.

3 For every custom rule you want to check:

a Select On .
b In the Convention column, enter the error message you want to display

if the rule is violated.

For example, for rule 4.3, All struct fields must follow the specified
pattern, you can enter All struct fields must begin with s_.
This message appears on the Result Details pane if:

1-81

1 Option Descriptions

• You specify the Pattern as s_[A-Za-z0-9_]+.
• A structure field in your code does not begin with s_.

c In the Pattern column, enter the text pattern.

For example, for rule 4.3, All struct fields must follow the specified
pattern, you can enter s_[A-Za-z0-9_]+. Polyspace reports violation
of rule 4.3 if a structure field does not begin with s_.

You can use Perl regular expressions to define patterns. For instance, you
can use the following expressions.

Expression Meaning

. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in

the set 0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For complete list of regular expressions, see Perl documentation.
• Manually edit an existing custom coding rules file:

1 Open the file with a text editor.
2 For every custom rule you want to check, enter the following information in

adjacent lines.

a Rule number, followed by on. For example:

4.3 on

b The error message you want to display starting with convention=. For
example:

convention=All struct fields must begin with s_

1-82

http://perldoc.perl.org/perlre.html#Regular-Expressions

 Check custom rules (-custom-rules)

c The text pattern starting with pattern=. For example:

pattern=s_[A-Za-z0-9_]

To use an existing coding rules file, enter the full path to the file in the field provided

or use in the New File window to navigate to the file location.

 Off (default)
Polyspace does not check your code against custom naming conventions.

Command-Line Information
Parameter: -custom-rules
Value: Name of coding rules file
Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -custom-
rules "C:\Rules\myrules.txt"

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”
• “Create Custom Coding Rules”

More About
• “Format of Custom Coding Rules File”
• “Custom Coding Rules”

1-83

1 Option Descriptions

Effective boolean types (-boolean-types)
Specify data types that coding rule checker must treat as effectively Boolean

Description

Specify data types that the coding rule checker must treat as effectively Boolean. You
can specify a data type only if you have defined it through a typedef statement in your
source code.

Use this option to allow Polyspace to check the following coding rules:

• MISRA C: 2004 and MISRA AC AGC

Rule
Number

Rule Statement

12.6 Operands of logical operators, &&, ||, and !, should be effectively
Boolean. Expressions that are effectively Boolean should not be used as
operands to other operators.

13.2 Tests of a value against zero should be made explicit, unless the operand
is effectively Boolean.

15.4 A switch expression should not represent a value that is effectively
Boolean.

• MISRA C: 2012

Rule
Number

Rule Statement

10.1 on
page
5-131

Operands shall not be of an inappropriate essential type

10.3 on
page
5-140

The value of an expression shall not be assigned to an object with a
narrower essential type or of a different essential type category

10.5 on
page
5-144

The value of an expression should not be cast to an inappropriate
essential type

1-84

 Effective boolean types (-boolean-types)

Rule
Number

Rule Statement

14.4 on
page
5-209

The controlling expression of an if statement and the controlling
expression of an iteration-statement shall have essentially Boolean type.

16.7 on
page
5-245

A switch-expression shall not have essentially Boolean type.

For example, in the following code, unless you specify myBool as effectively Boolean,
Polyspace detects a violation of MISRA C: 2012 rule 14.4.

typedef int myBool;

void func1(void);

void func2(void);

void func(myBool flag) {

 if(flag)

 func1();

 else

 func2();

}

This option is available on the Coding Rules & Code Metrics node in the
Configuration pane.

Settings

No Default

Click to add a field. Enter a type name that you want Polyspace to treat as Boolean.

Dependencies

This option is available only if you select Check MISRA AC AGC (-misra-ac-agc),
Check MISRA C:2004 (-misra2), or Check MISRA C:2012 (-misra3).

1-85

1 Option Descriptions

Command-Line Information
Parameter: -boolean-types
Value: type1[,type2[,...]]
No Default
Example: polyspace-bug-finder-nodesktop -sources filename -misra2
required-rules -boolean-types boolean1_t,boolean2_t

See Also
Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C:2004 (-misra2) | Check
MISRA C:2012 (-misra3)

Related Examples
• “Activate Coding Rules Checker”
• “Specify Boolean Types”

More About
• “MISRA C:2004 and MISRA AC AGC Coding Rules”

1-86

 Allowed pragmas (-allowed-pragmas)

Allowed pragmas (-allowed-pragmas)
Specify pragma directives for which MISRA C:2004 rule 3.4 must not be applied

Description

Specify pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ rule 16-6-1
must not be applied. MISRA C:2004/MISRA AC AGC rule 3.4 and MISRA C++ rule
16-6-1 require that all pragma directives are documented within the documentation of
the compiler. If you list the pragma as in this analysis option, Polyspace considers the
pragma documented.

This option is available on the Coding Rules & Code Metrics node in the
Configuration pane.

Settings

No Default

Click to add a field. Enter the pragma name that you want Polyspace to ignore
during coding rule checking .

Dependencies

This option is enabled only if you select one of the following options:

• Check MISRA C:2004 (-misra2)
• Check MISRA AC AGC (-misra-ac-agc).
• Check MISRA C++ rules (-misra-cpp)

Command-Line Information
Parameter: -allowed-pragmas
Value: pragma1[,pragma2[,...]]

1-87

1 Option Descriptions

No Default
Example: polyspace-bug-finder-nodesktop -sources filename -misra-cpp
required-rules -allowed-pragmas pragma_01,pragma_02

Example: polyspace-bug-finder-nodesktop -sources filename -misra2
required-rules -allowed-pragmas pragma_01,pragma_02

See Also
Check MISRA C:2004 (-misra2) | Check MISRA AC AGC (-misra-ac-agc) | Check
MISRA C++ rules (-misra-cpp)

Related Examples
• “Activate Coding Rules Checker”

More About
• “MISRA C:2004 and MISRA AC AGC Coding Rules”
• “MISRA C++ Coding Rules”

1-88

 Find defects (-checkers)

Find defects (-checkers)
Activate or deactivate defect checkers

Description

Activate different defect checkers.

This option is available on the Bug Finder Analysis node in the Configuration pane.

Settings

Default: default

default

A list of defects defined by the software. For information on which defects are default,
refer to the individual defect reference pages.

all

All defects.
custom

Choose the defects you want to find by selecting categories of checkers or specific
defects.

Command-Line Information

Regardless of order, the shell script processes the -checkers option, and then -
disable-checkers option.

Refer to the individual defect reference pages for the command-line parameters values.
Parameter: -checkers
Value: default | all | defect group | defect parameters
Default: default
Parameter: -disable-checkers
Value: defect group | defect parameter

1-89

1 Option Descriptions

Example 1: polyspace-bug-finder-nodesktop -sources filename -checkers
numerical,dataflow -disable-checkers FLOAT_ZERO_DIV

Example 2: polyspace-bug-finder-nodesktop -sources filename -checkers
default -disable-checkers concurrency,dead_code

See Also
“Defects”

Related Examples
• “Specify Analysis Options”

More About
• “Bug Finder Defect Groups”

1-90

 Generate report

Generate report
Specify whether to generate a report after the analysis

Description

Specify whether to generate a report after the analysis.

Depending on the format you specify, you can view this report using an external
software. For example, if you specify the format PDF, you can view the report in a pdf
reader.

This option is available on the Reporting node in the Configuration pane.

Settings

 On
Polyspace generates an analysis report using the template and format you specify.

 Off (default)
Polyspace does not generate an analysis report. You can still view your results in the
Polyspace interface.

Tips

• To generate a report after an analysis is complete, select Reporting > Run Report.
Alternatively, at the command line, use the command polyspace-report-
generator with the options -template and -format.

Command-Line Information

There is no command-line option to solely turn on the report generator. However, using
the options -report-template for template and -report-output-format for output
format automatically turns on the report generator.

1-91

1 Option Descriptions

See Also
Report template (-report-template) | Output format (-report-output-format)

Related Examples
• “Specify Analysis Options”
• “Generate Reports”

1-92

 Report template (-report-template)

Report template (-report-template)
Specify template for generating analysis report

Description

Specify template for generating analysis report.

.rpt files for the report templates are available in matlabroot\toolbox\polyspace
\psrptgen\templates\bug_finder. Here, matlabroot is the MATLAB installation
folder.

Depending on the template you use, the report contains information about certain types
of results from the Results List pane. See the template descriptions below. The report
does not contain the line or column number for a result. Use the report for archiving,
gathering statistics and checking whether results have been reviewed and addressed
(for certification purposes or otherwise). To review a result in your source code, use the
Polyspace user interface or your IDE if you are using a Polyspace plugin.

This option is available on the Reporting node in the Configuration pane.

Settings

Default: BugFinderSummary

BugFinderSummary

The report lists:

• Polyspace Bug Finder Summary: Number of results in the project. The
results are summarized by file. The files that are partially analyzed because of
compilation errors are listed in a separate table.

• Code Metrics Summary: Summary of the various code complexity metrics. For
more information, see “Code Metrics”.

• Defect Summary: Defects that Polyspace Bug Finder™ looks for. For each
defect, the report lists the:

• Defect group.
• Defect name.

1-93

1 Option Descriptions

• Number of instances of the defect found in the source code.
• Coding Rules Summary: Coding rules along with number of violations.

BugFinder

The report lists:

• Polyspace Bug Finder Summary: Number of results in the project. The
results are summarized by file. The files that are partially analyzed because of
compilation errors are listed in a separate table.

• Code Metrics Summary: Summary of the various code complexity metrics. For
more information, see “Code Metrics”.

• Defects: Defects found in the source code. For each defect, the report lists the:

• Function containing the defect.
• Defect information on the Result Details pane.
• Review information, such as Severity, Status and comments.

• Coding Rules: Coding rule violations in the source code. For each rule violation,
the report lists the:

• Rule number and description.
• Function containing the rule violation.
• Review information, such as Severity, Status and comments.

• Configuration Settings: List of analysis options that Polyspace uses for
analysis. For more information, see “Analysis Options”.

If you check for coding rules, an additional Coding Rules Configuration
section states the rules along with the information whether they were enabled or
disabled.

BugFinder_CWE

The report contains the same information as the BugFinder report. However, in the
Defects chapter, an additional column lists the CWE™ identifiers for each defect.

CodeMetrics

The report lists the following:

• Code Metrics Summary: Various quantities related to the source code. For more
information, see “Code Metrics”.

1-94

 Report template (-report-template)

• Code Metrics Details: Various quantities related to the source code with the
information broken down by file and function.

CodingRules

For C code, the report lists information about compliance with:

• MISRA C rules
• MISRA AC AGC rules
• Custom coding rules

For C++ code, the report lists information about compliance with:

• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

This report also contains the Polyspace configuration settings for the analysis. An
additional section states the rules along with the information whether they were
enabled or disabled.

Metrics

Only available for results downloaded from the Polyspace Metrics interface.

The report lists information useful to quality engineers and available on the
Polyspace Metrics interface, including:

• Information about whether the project satisfies quality objectives
• Time taken in each phase of analysis
• Metrics about the whole project. For each metric, the report lists the quality

threshold and whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of

violations justified and whether the justifications satisfy quality objectives.
• Definite as well as possible run-time errors in the project. For each type of

run-time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

1-95

1 Option Descriptions

Dependencies

This option is available only if you select the Generate report check box.

Command-Line Information
Parameter: -report-template
Value: Name of template with extension .rpt
Example: polyspace-bug-finder-nodesktop -sources file_name -report-
template BugFinder.rpt

See Also
Generate report | Output format (-report-output-format)

Related Examples
• “Generate Reports”

1-96

 Output format (-report-output-format)

Output format (-report-output-format)
Specify output format of generated report

Description

Specify output format of generated report.

This option is available on the Reporting node in the Configuration pane.

Settings

Default: Word

HTML

Generate report in .html format
PDF

Generate report in .pdf format
Word

Generate report in .docx format.

Tips

If the table of contents or graphics in a .docx report appear outdated, select the content
of the report and refresh the document. Use keyboard shortcuts Ctrl+A to select the
content and F9 to refresh it.

Dependencies

This option is enabled only if you select the Generate report box.

Command-Line Information
Parameter: -report-output-format

1-97

1 Option Descriptions

Value: html | pdf | word
Default: word
Example: polyspace-bug-finder-nodesktop -sources file_name -report-
output-format pdf

See Also
Generate report

Related Examples
• “Specify Analysis Options”
• “Generate Reports”

1-98

 Batch (-batch)

Batch (-batch)
Enable batch remote analysis

Description

Enable batch remote analysis.

This option is available on the Distributed Computing node in the Configuration
pane.

For batch remote analysis, you need:

• Polyspace and MATLAB Distributed Computing Server™ on the cluster
• MATLAB, Polyspace and Parallel Computing Toolbox™ on your local computer

Settings

 On
Run batch analysis on a remote computer. In this remote analysis mode, the analysis
is queued on a cluster after the compilation phase. Therefore, on your local computer,
after the analysis is queued:

• If you are running the analysis from the Polyspace user interface, you can close
the user interface.

• If you are running the analysis from the command line, you can close the
command-line window.

You can manage the queue from the Polyspace Job Monitor. To use the Polyspace Job
Monitor:

• In the Polyspace user interface, select Tools > Open Job Monitor.
• On the DOS or UNIX® command line, use the polyspace-jobs-manager

command. For more information, see “Run Remote Analysis at the Command
Line”.

• On the MATLAB command line, use the polyspaceJobsManager function.

1-99

1 Option Descriptions

After the analysis, you might have to manually download the results from the
cluster.

 Off (default)
Do not run batch analysis on a remote computer.

Command-Line Information

To run a remote analysis from the command line, use with the -scheduler option.
Parameter: -batch
Value: -scheduler host_name if you have not set the Job scheduler host name in
the Polyspace user interface
Default: Off
Example: polyspace-bug-finder-nodesktop -batch -scheduler NodeHost
polyspace-bug-finder-nodesktop -batch -scheduler MJSName@NodeHost

See Also
Add to results repository (-add-to-results-repository) | -scheduler

Related Examples
• “Specify Analysis Options”
• “Set Up Server for Metrics and Remote Analysis”

1-100

 Add to results repository (-add-to-results-repository)

Add to results repository (-add-to-results-
repository)
Upload analysis results for viewing on Polyspace Metrics web dashboard

Description

Specify upload of analysis results to the Polyspace Metrics results repository, allowing
Web-based reporting of results and code metrics.

This option is available on the Distributed Computing node in the Configuration
pane.

Settings

 On
Analysis results are stored in the Polyspace Metrics results repository. This allows
you to use a Web browser to view results and code metrics.

 Off (default)
Analysis results are stored locally.

Tips

This option is only available for remote analyses. For local analysis, you can manually
upload your results to Polyspace Metrics by right-clicking on your results file and
selecting Upload to Metrics.

Command-Line Information
Parameter: -add-to-results-repository
Default: Off
Example: polyspace-bug-finder-nodesktop -batch -scheduler NodeHost -
add-to-results-repository

1-101

1 Option Descriptions

See Also
“Set Up Server for Metrics and Remote Analysis” | “Set Up Polyspace Metrics” | Batch
(-batch)

Related Examples
• “Run Remote Batch Analysis”

1-102

 Calculate code metrics (-code-metrics)

Calculate code metrics (-code-metrics)
Compute and display code complexity metrics

Description

Specify that Polyspace must compute and display code complexity metrics for your source
code. For more information, see “Code Metrics”.

This option is available on the Coding Rules & Code Metrics node in the
Configuration pane.

Settings

 On
Polyspace computes and displays code complexity metrics on the Results List pane.

 Off (default)
Polyspace does not compute complexity metrics.

Command-Line Information
Parameter: -code-metrics
Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -code-
metrics

1-103

1 Option Descriptions

Command/script to apply after the end of the code
verification (-post-analysis-command)
Specify command or script to be executed after analysis

Description

Specify a command or script to be executed after the analysis.

This option is available on the Advanced Settings node in the Configuration pane.

Settings

No Default

Enter full path to the command or script, or click to navigate to the location of the
command or script. After the analysis, this script is executed.

For a Perl script, in Windows, specify the full path to the Perl executable followed by
the full path to the script. For example, to specify a Perl script send_email.pl that
sends an email once the analysis is over, enter matlabroot\sys\perl\win32\bin
\perl.exe <absolute_path>\send_email.pl. Here, matlabroot is the location of
the current MATLAB installation, such as C:\Program Files\MATLAB\R2015b\, and
<absolute_path> is the location of the Perl script.

Tips

If you perform verification on a remote server, after verification, the software executes
your command on the server, not on the client desktop. If your command executes a
script, the script must be present on the server.

For instance, if you specify the command, /local/utils/send_mail.sh, the Shell
script send_email.sh must be present on the server in /local/utils/. The software
does not copy the script send_email.sh from your desktop to the server before
executing the command. If the script is not present on the server, you encounter an error.

1-104

 Command/script to apply after the end of the code verification (-post-analysis-command)

Sometimes, there are multiple servers that the MATLAB Job Scheduler can run the
verification on. Place the script on each of the servers because you do not control which
server eventually runs your verification.

Command-Line Information
Parameter: -post-analysis-command
Value: Path to executable file or command in quotes
No Default
Example in Linux: polyspace-bug-finder-nodesktop -sources file_name -
post-analysis-command `pwd`/send_email.pl

Example in Windows: polyspace-bug-finder-nodesktop -sources file_name
-post-analysis-command "C:\Program Files\MATLAB\R2015b\sys\perl

\win32\bin\perl.exe" "C:\My_Scripts\send_email"

See Also
Command/script to apply to preprocessed files (-post-preprocessing-command)

Related Examples
• “Specify Analysis Options”

1-105

1 Option Descriptions

Other
Specify additional flags for analysis

Description

This dialog box is for adding nonofficial or command-line only options to the analyzer.

This option is available on the Advanced Settings node in the Configuration pane.

Tip

Nonofficial options: In rare circumstances, to work around very specific issues,
MathWorks Technical Support might provide you some undocumented options. If
you are running verification from the user interface, you use the Other field in the
Configuration pane to enter the options. Sometimes, the options and their arguments
have to be preceded by extra flags. When providing you the option, Technical Support
will let you know if the extra flags are required.
Possible Flags: -extra-flags | -c-extra-flags | -cpp-extra-flags | -
cfe-extra-flags | -il-extra-flags

Example: polyspace-bug-finder-nodesktop -extra-flags -option-name -
extra-flags option_param

1-106

 Termination functions (-functions-called-after-loop)

Termination functions (-functions-called-
after-loop)

Specify functions that the generated main must call after the cyclic code loop

Description

This option is available only for model-generated code.

Specify functions that the generated main must call after the cyclic code ends.

This option is available on the Main Generator node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name.

For C++ class methods, use the syntax className::functionName.

Tips

• If you specify a function for the option Initialization functions, you cannot specify it
for Termination functions.

Command-Line Information
Parameter: -functions-called-after-loop
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-after-loop myfunc

1-107

1 Option Descriptions

See Also
Parameters (-variables-written-before-loop) | Inputs (-variables-written-
in-loop) | Initialization functions (-functions-called-before-loop) | Step
functions (-functions-called-in-loop)

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
• “Main Generation for Model Analysis”

1-108

 Initialization functions (-functions-called-before-loop)

Initialization functions (-functions-called-
before-loop)
Specify functions that the generated main must call before the cyclic code loop

Description

This option is available only for model- generated code.

Specify functions that the generated main must call before the cyclic code begins.

This option is available on the Main Generator node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int).

Command-Line Information
Parameter: -functions-called-before-loop
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-before-loop myfunc

See Also
Parameters (-variables-written-before-loop) | Inputs (-variables-written-
in-loop) | Step functions (-functions-called-in-loop) | Termination functions (-
functions-called-after-loop)

1-109

1 Option Descriptions

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
• “Main Generation for Model Analysis”

1-110

 Step functions (-functions-called-in-loop)

Step functions (-functions-called-in-loop)
Specify functions that the generated main must call in the cyclic code loop

Description

This option is available only for model-generated code.

Specify functions that the generated main must call in each cycle of the cyclic code.

This option is available on the Main Generator node in the Configuration pane.

Settings

Default: none

none

The generated main does not call functions in the cyclic code.
all

The generated main calls all functions except inlined ones. If you specify certain
functions for the options Initialization functions or Termination functions, the
generated main does not call those functions in the cyclic code.

custom

The generated main calls functions that you specify. Click to add a field. Enter
function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int).

Tips

If you have specified a function for the option Initialization functions or Termination
functions, to call it inside the cyclic code, use custom and specify the function name.

1-111

1 Option Descriptions

Command-Line Information
Parameter: -functions-called-in-loop
Value: none | all | custom=function1[,function2[,...]]
Default: none
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-in-loop all

See Also
Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-loop) |
Termination functions (-functions-called-after-loop)

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
• “Main Generation for Model Analysis”

1-112

 Parameters (-variables-written-before-loop)

Parameters (-variables-written-before-
loop)
Specify variables that the generated main must initialize before the cyclic code loop

Description

This option is available only for model-generated code.

Specify variables that the generated main must initialize before the cyclic code loop
begins. Before the loop begins, Polyspace considers these variables to have any value
allowed by their type.

This option is available on the Main Generator node in the Configuration pane.

Settings

Default: none

none

The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click to
add a field. Enter variable name. For C++ class members, use the syntax
className::variableName.

Command-Line Information
Parameter: -variables-written-before-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: public

1-113

1 Option Descriptions

Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -variables-written-before-loop all

See Also
Inputs (-variables-written-in-loop) | Initialization functions (-functions-
called-before-loop) | Step functions (-functions-called-in-loop) |
Termination functions (-functions-called-after-loop)

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
• “Main Generation for Model Analysis”

1-114

 Inputs (-variables-written-in-loop)

Inputs (-variables-written-in-loop)
Specify variables that the generated main must initialize in the cyclic code loop

Description

This option is available only for model-generated code.

Specify variables that the generated main must initialize at the beginning of every
iteration of the cyclic code loop. At the beginning of every loop iteration, Polyspace
considers these variables to have anyvalue allowed by their type.

This option is available on the Main Generator node in the Configuration pane.

Settings

Default: none

none

The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click to
add a field. Enter variable name. For C++ class members, use the syntax
className::variableName.

Command-Line Information
Parameter: -variables-written-in-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: none
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -variables-written-in-loop all

1-115

1 Option Descriptions

See Also
Parameters (-variables-written-before-loop) | Initialization functions (-
functions-called-before-loop) | Step functions (-functions-called-in-loop)
| Termination functions (-functions-called-after-loop)

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
• “Main Generation for Model Analysis”

1-116

 Verify model generated code (-main-generator)

Verify model generated code (-main-generator)
Specify that a main function must be generated if it is not present in source files

Description
This option is available only for model-generated code.

Specify that Polyspace must generate a main function if it does not find one in the source
files.

This option is available for model-generated projects on the Main Generator node in the
Configuration pane.

Settings
Default: On

 On
Polyspace generates a main function if it does not find one in the source files. The
generated main:

• Initializes variables that you specify using Variables to initialize.
• Before calling other functions, calls the Initialization functions you specified.
• Calls the Functions to call functions that you specified in an arbitrary order.

If you do not specify the function and variable options above, the generated main:

• Initializes all global variables except those declared with keywords const and
static.

• In all specific orders, calls all functions that are not called anywhere in the
source files. Polyspace considers that global variables can be written between
two consecutive function calls. Therefore, in each called function, global variables
initially have the full range of values allowed by their type.

Command-Line Information
Parameter: -main-generator

1-117

1 Option Descriptions

Default: On
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator ...

See Also
Parameters (-variables-written-before-loop) | Inputs (-variables-written-
in-loop) | Initialization functions (-functions-called-before-loop) | Step
functions (-functions-called-in-loop) | Termination functions (-functions-
called-after-loop)

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Main Generation for Model Analysis”

1-118

 C++11 extensions (-cpp11-extension)

C++11 extensions (-cpp11-extension)
Allow C++11 language extensions

Description

Allow for C++11 language extensions.

If your code uses any C++11 language constructs, select this option to allow this syntax
during your analysis.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

 On
The analysis allows C++11 syntax.

 Off (default)
The analysis does not allow C++11 syntax.

Dependencies

This analysis option is available only when both of the following are true:

• Source code language (-lang) is CPP or C-CPP.
• Compiler (-compiler) is none, gnu4.6, or gnu4.7.

Command-Line Information
Parameter: -cpp11-extension
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -cpp11-extension

See Also
Compiler (-compiler) | Block char16/32_t types (-no-uliterals)

1-119

1 Option Descriptions

More About
• “Supported C++ 2011 Extensions”

1-120

 Block char16/32_t types (-no-uliterals)

Block char16/32_t types (-no-uliterals)
Use your typedefs for char16_t or char32_t instead of predefined typedefs

Description

The analysis does not allow char16_t or char32_t types.

If you have defined char16_t and/or char32_t through a typedef statement or using
includes, this option allows you to turn off the standard Polyspace definition of char16_t
and char32_t.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

 On
The analysis does not allow char16_t and char32_t types.

 Off (default)
The analysis allows char16_t and char32_t types.

Dependencies

You can select this option only when both of the following are true:

• Source code language (-lang) is CPP or C-CPP.
• Compiler (-compiler) is either none or a gnu version.

Command-Line Information
Parameter: -no-uliterals
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -compiler gnu4.7 -
cpp11-extension -no-uliterals

1-121

1 Option Descriptions

See Also
Compiler (-compiler) | C++11 extensions (-cpp11-extension)

More About
• “Supported C++ 2011 Extensions”

1-122

 Pack alignment value (-pack-alignment-value)

Pack alignment value (-pack-alignment-value)
Specify default structure packing alignment for code developed in Visual C++

Description

Specify the default packing alignment for an analysis.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

Default: 8

• 1
• 2
• 4
• 8
• 16

Dependencies

This analysis option is available only if you select one of the visual* options for
Compiler (-compiler).

Command-Line Information
Parameter: -pack-alignment-value
Value: 1 | 2 | 4 | 8 | 16
Default: 8
Example: polyspace-bug-finder-nodesktop -lang cpp -pack-alignment-
value 4

1-123

1 Option Descriptions

Ignore pragma pack directives (-ignore-pragma-
pack)
Ignore #pragma pack directives

Description

Specify C++ #pragma packing alignment for structure, union, and class members.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

 On
Allows C++ #pragma directives to be ignored in order to prevent link errors.

 Off (default)
Keeps C++ #pragma directives in the analysis.

Dependency

This analysis option is available only when Compiler (-compiler) is set to one of the
visual* options.

Command-Line Information
Parameter: -ignore-pragma-pack
Default: Off
Example: polyspace-bug-finder-nodesktop -lang cpp -ignore-pragma-pack

1-124

 Management of 'for loop' index scope (-for-loop-index-scope)

Management of 'for loop' index scope (-for-
loop-index-scope)
Specify scope of index variable declared in for loop

Description

Specify the scope of the index variable declared within a for loop.

For example:
for (int index=0; ...){};

index++; // At this point, index variable is usable (out) or not (in)

This option allows the default behavior implied by the Polyspace -compiler option to be
overridden.

This option is equivalent to the Visual C++ options /Zc:forScope and Zc:forScope-.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

Default: defined-by-dialect

defined-by-dialect

Default behavior specified by selected compiler.
out

The index variable is visible outside the for loop.

Default behavior for the dialect options visual6, visual7 and visual 7.1.
in

The index variable is not visible outside the for loop.

Default behavior for all other dialects, including visual8. The C++ standard
specifies that the index is treated as in.

1-125

1 Option Descriptions

Dependency

This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information
Parameter: -for-loop-index-scope
Value: defined-by-dialect | out | in
Default: defined-by-dialect
Example: polyspace-bug-finder-nodesktop -lang cpp -for-loop-index-
scope in

1-126

 Management of wchar_t (-wchar-t-is)

Management of wchar_t (-wchar-t-is)
Specify how the analysis must interpret the wchar_t type

Description

Specify how to treat wchar_t.

This option is equivalent to the Visual C++ options /Zc:wchar and /Zc:wchar-.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

Default: defined-by-dialect

defined-by-dialect

Default behavior specified by selected setting for Compiler (-compiler)
typedef

Use according to typedef statement specified by Microsoft Visual C++
6.0/7.0/7.1 compilers.

Default behavior for the following settings of Compiler (-compiler):

• visual6

• visual7.0

• visual7.1

keyword

Use as a keyword as given by the C++ standard

Default behavior for all other compilers, including visual8.

Dependency

This option is available only if you set Source code language (-lang) to CPP or C-CPP.

1-127

1 Option Descriptions

Command-Line Information
Parameter: -wchar-t-is
Value: defined-by-dialect | typedef | keyword
Default: defined-by-dialect
Example: polyspace-bug-finder-nodesktop -for-loop-index-scope keyword

1-128

 Set wchar_t to unsigned long (-wchar-t-is-unsigned-long)

Set wchar_t to unsigned long (-wchar-t-is-
unsigned-long)
Consider underlying type of wchar_t to be unsigned long

Description

Specify the underlying type of wchar_t to be unsigned long.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

 On
Set the type of size_t to unsigned long, as defined in the C++ standard.

For example, sizeof(L'W') will have the value of sizeof(unsigned long) and
the wchar_t field will be aligned in the same way as the unsigned long field.

 Off (default)
Use the default underlying type of wchar_t as defined by the setting for Compiler (-
compiler) or the option Management of wchar_t (-wchar-t-is).

Dependency

This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information
Parameter: -wchar-t-is-unsigned-long
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -wchar-t-is-
unsigned-long

1-129

1 Option Descriptions

Set size_t to unsigned long (-size-t-is-
unsigned-long)
Consider underlying type of size_t to be unsigned long

Description

Specify that the underlying type of size_t must be unsigned long. If you use this
option, you can only redefine size_t with a typedef statement to unsigned long.

For example, Polyspace applies the following typedef statement because the type is
unsigned long:

typedef unsigned long size_t;

However, Polyspace ignores this typedef statement, because the Set size_t to
unsigned long option allows only unsigned long.

typedef unsigned int size_t;

This option is available on the Target & Compiler node in the Configuration pane.

Settings

 On
Set the type of size_t to unsigned long

 Off (default)
Use the default underlying type of size_t, unsigned int

Dependency

This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information
Parameter: -size-t-is-unsigned-long

1-130

 Set size_t to unsigned long (-size-t-is-unsigned-long)

Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -size-t-is-
unsigned-long

1-131

1 Option Descriptions

Ignore link errors (-no-extern-c)
Ignore certain linking errors

Description

Ignore linking errors.

Some functions may be declared inside an extern "C" { } block in some files and not
in others. Then, their linkage is not the same and it causes a link error according to the
ANSI standard.

Applying this option will cause Polyspace to ignore this error. This permissive option may
not resolve all the extern C linkage errors.

This option is available on the Environment Settings node in the Configuration
pane.

Settings

 On
Ignore the linkage errors if possible.

 Off (default)
Stop analysis for linkage errors.

Dependency

This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information
Parameter: -no-extern-C
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -no-extern-C

1-132

 Check MISRA C++ rules (-misra-cpp)

Check MISRA C++ rules (-misra-cpp)
Check for violations of MISRA C++ rules

Description

Specify whether to check for violation of MISRA C++ rules. Each value of the option
corresponds to a subset of rules to check. For projects with mixed C and C++ code, the
MISRA C++ checker analyzes only .cpp files.

After analysis, the Results List pane lists the coding rule violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

This option is available on the Coding Rules & Code Metrics node in the
Configuration pane.

Settings

Default: required-rules

required-rules

Check required coding rules.
all-rules

Check required and advisory coding rules.
SQO-subset1

Check only a subset of MISRA C++ rules. In Polyspace Code Prover, observing
these rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C++)”.

SQO-subset2

Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (C+
+)”

custom

1-133

1 Option Descriptions

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:

<rule number> off|on

Use # to enter comments in the file. For example:

9-5-1 off # rule 9-5-1: classes

15-0-2 on # rule 15-0-2: exception handling

Dependency

This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information
Parameter: -misra-cpp
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | file
Default: required-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -misra-cpp
all-rules

See Also
Generate results for sources and (-generate-results-for)

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”
• “Select Specific MISRA or JSF Coding Rules”

1-134

 Check MISRA C++ rules (-misra-cpp)

More About
• “Polyspace MISRA C++ Checker”
• “Software Quality Objective Subsets (C++)”
• “MISRA C++ Coding Rules”

1-135

1 Option Descriptions

Check JSF C++ rules (-jsf-coding-rules)
Check for violations of JSF C++ rules

Description

Specify whether to check for violation of JSF C++ rules (JSF++:2005). Each value of the
option corresponds to a subset of rules to check. For projects with mixed C and C++ code,
the JSF C++ checker analyzes only .cpp files.

After analysis, the Results List pane lists the coding rule violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

This option is available on the Coding Rules & Code Metrics node in the
Configuration pane.

Settings

Default: shall-rules

shall-rules

Check all Shall rules. Shall rules are mandatory requirements and require
verification.

shall-will-rules

Check all Shall and Will rules. Will rules are intended to be mandatory
requirements but do not require verification.

all-rules

Check all Shall, Will, and Should rules. Should rules are advisory rules.
custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

1-136

 Check JSF C++ rules (-jsf-coding-rules)

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:

<rule number> off|on

Use # to enter comments in the file. For example:

67 off # rule 67: classes

202 on # rule 202: expressions

Tips

• If your project uses a setting other than iso for Compiler (-compiler), some rules
might not be completely checked. For example, AV Rule 8: “All code shall conform to
ISO/IEC 14882:2002(E) standard C++.”

Dependency

This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information
Parameter: -jsf-coding-rules
Value: shall-rules | shall-will-rules | all-rules | file
Default: shall-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -jsf-
coding-rules all-rules

See Also
Generate results for sources and (-generate-results-for)

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”

1-137

1 Option Descriptions

• “Select Specific MISRA or JSF Coding Rules”

More About
• “Polyspace JSF C++ Checker”
• “JSF C++ Coding Rules”

1-138

2

Polyspace Command-Line Options

2 Polyspace Command-Line Options

-asm-begin -asm-end
Exclude compiler-specific asm functions from analysis

Syntax

-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]"

Description

-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]" excludes
compiler-specific assembly language source code functions from the analysis. You must
use these two options together.

Polyspace recognizes most inline assemblers by default. Use the option only if
compilation errors occur due to introduction of assembly code.

Mark the offending code block by two #pragma directives, one at the beginning of the
assembly code and one at the end. In the command usage, give these marks in the same
order for -asm-begin as they are for -asm-end.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

A block of code is delimited by #pragma start1 and #pragma end1. These names must
be in the same order for their respective options. Either:

-asm-begin "start1" -asm-end "end1"

or

-asm-begin "mark1,...markN,start1" -asm-end "mark1,...markN,end1"

The following example marks two functions for exclusion, foo_1 and foo_2.

Code:

2-2

 -asm-begin -asm-end

#pragma asm_begin_foo

int foo(void) { /* asm code to be ignored by Polyspace */ }

#pragma asm_end_foo

#pragma asm_begin_bar

void bar(void) { /* asm code to be ignored by Polyspace */ }

#pragma asm_end_bar

Polyspace Command:

polyspace-bug-finder-nodesktop -lang c -asm-begin "asm_begin_foo,asm_begin_bar"

 -asm-end "asm_end_foo,asm_end_bar"

asm_begin_foo and asm_begin_bar mark the beginning of the assembly source code
sections to be ignored. asm_end_foo and asm_end_bar mark the end of those respective
sections.

See Also
polyspaceBugFinder

2-3

2 Polyspace Command-Line Options

-author
Specify project author

Syntax

-author "value"

Description

-author "value" assigns an author to the Polyspace project. The name appears as the
project owner in Polyspace Metrics and on generated reports.

The default value is the user name of the current user, given by the DOS or UNIX
command whoami.

In the Polyspace user interface, select to specify the Project name, Version, and
Author parameters in the Polyspace Project – Properties dialog box.

Examples

Assign a project author to your Polyspace Project.

polyspace-bug-finder-nodesktop -author "John Smith"

See Also
-date | -prog | polyspaceBugFinder

2-4

 -date

-date
Specify date of analysis

Syntax

-date "date"

Description

-date "date" specifies the date stamp for the analysis in the format dd/mm/yyyy. By
default the value is the date the analysis starts.

Examples

Assign a date to your Polyspace Project.

polyspace-bug-finder-nodesktop -date "15/03/2012"

See Also
-author | -prog | polyspaceBugFinder | polyspaceCodeProver

2-5

2 Polyspace Command-Line Options

-generate-launching-script-for
Extract information from project file

Syntax
-generate-launching-script-for PRJFILE

Description
-generate-launching-script-for PRJFILE extracts information from the project
file PRJFILE so that you can run an analysis from the command line. A folder is created
containing the following files:

• source_command.txt — List of source files for the -source-files option.
• options_command.txt — List of the analysis options for the -options-file

option.
• temporal_exclusions.txt — List of temporal exclusions, generated only if you

specify the Temporally exclusive tasks (-temporal-exclusions-file) option.
• .polyspace_conf.psprj — A copy of the project file Polyspace used to generate the

scripting files.
• launchingCommand.sh (UNIX) or launchingCommand.bat (DOS) — shell script

that calls the correct commands. The script also calls any options that cannot be
given to the -options-file command, such as -batch or -add-to-results-
repository. You can give this file additional analysis options as parameters.

Note: The script that Polyspace generates runs the same analysis that Polyspace runs
from the user interface. If your project runs in the Polyspace Bug Finder interface, the
script will run from the command line.

Examples

Extract information to run myproject from the command line. Use this option with the
desktop binary polyspace-bug-finder.

2-6

 -generate-launching-script-for

polyspace-bug-finder -generate-launching-script-for myproject.bf.psprj

2-7

2 Polyspace Command-Line Options

-h[elp]
Display list of possible options

Syntax

-h

-help

Description

-h and -help display the list of possible options in the shell window and the argument
syntax.

Examples

Display the command-line help.

polyspace-bug-finder-nodesktop -h

polyspace-bug-finder-nodesktop -help

See Also
polyspaceBugFinder

2-8

 -I

-I
Specify include folder for compilation

Syntax

-I folder

Description

-I folder specifies a folder that contains include files required for compiling your
sources. The folder contains You can specify only one folder for each instance of -I.
However, you can specify this option multiple times.

Polyspace software automatically includes the ./sources folder (if it exists) after the
include folders that you specify.

Examples

Include two folders with the analysis.

polyspace-bug-finder-nodesktop -I /com1/inc -I /com1/sys/inc

Because ./sources is included automatically, this Polyspace command is equivalent to:

polyspace-bug-finder-nodesktop -I /com1/inc -I /com1/sys/inc

 -I ./sources

See Also
polyspaceBugFinder

2-9

2 Polyspace Command-Line Options

-import-comments
Import comments and justifications from previous analysis

Syntax

-import-comments resultsFolder

Description

-import-comments resultsFolder imports the comments and justifications from a
previous analysis, as specified by the results folder. resultsFolder must be the same
type of analysis you are running. For example, if you are running a Bug Finder analysis,
you cannot import comments from a Code Prover verification.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Increment your project’s version number (-version) and import comments from the
previous results.

polyspace-bug-finder-nodesktop -version 1.3

 -import-comments C:\Results\myProj\1.2

See Also
-version | polyspaceBugFinder

2-10

 -max-processes

-max-processes
Specify maximum number of processors for analysis

Syntax

-max-processes num

Description

-max-processes num specifies the maximum number of processors that you want the
analysis to use. On a multicore system, the software parallelizes the analysis and uses
the specified number of processors to speed up the analysis. The valid range of num is 1 to
128.

Unless you specify this option, the Bug Finder analysis uses the maximum number of
available processors. Use this option to restrict the number of processors used.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Disable parallel processing during the analysis.

polyspace-bug-finder-nodesktop -max-processes 1

Tips

You must have at least 4 GB of RAM per processor for analysis. For instance, if your
machine has 16 GB of RAM, do not use this option to specify more than four processors.

See Also
polyspaceBugFinder

2-11

2 Polyspace Command-Line Options

-non-preemptable-tasks
Specify functions that represent nonpreemptable tasks

Syntax
-non-preemptable-tasks function1[,function2[,...]]

Description
-non-preemptable-tasks function1[,function2[,...]] specifies functions that
represent nonpreemptable tasks.

The functions cannot be interrupted by other noncyclic entry points and cyclic tasks but
can be interrupted by interrupts, preemptable or nonpreemptable.

To specify a function as a nonpreemptable cyclic task, you must first specify the following
options:

• Configure multitasking manually
• Entry points (-entry-points) or Cyclic tasks (-cyclic-tasks): Specify the

function name.

The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

See Also
-preemptable-interrupts | Cyclic tasks (-cyclic-tasks) | Interrupts (-
interrupts) | Entry points (-entry-points) | Critical section details (-critical-
section-begin -critical-section-end) | Temporally exclusive tasks (-
temporal-exclusions-file)

Related Examples
• “Specify Analysis Options”

2-12

 -non-preemptable-tasks

• “Set Up Multitasking Analysis Manually”

Introduced in R2016b

2-13

2 Polyspace Command-Line Options

-options-file
Run Polyspace using list of options

Syntax

-options-file file

Description

-options-file file specifies a file which lists your analysis options. The file must be
a text file with each option on a separate line. Use # to add comments to this file.

Examples

1 Create an options file called listofoptions.txt with your options. For example:

#These are the options for MyBugFinderProject

-lang c

-prog MyBugFinderProject

-author jsmith

-sources "mymain.c,funAlgebra.c,funGeometry.c"

-OS-target no-predefined-OS

-target x86_64

-compiler none

-dos

-misra2 required-rules

-do-not-generate-results-for all-headers

-checkers default

-disable-checkers concurrency

-results-dir C:\Polyspace\MyBugFinderProject

2 Run Polyspace using options in the file listofoptions.txt.

polyspace-bug-finder-nodesktop -options-file listofoptions.txt

See Also
polyspaceBugFinder | polyspaceConfigure

2-14

 -preemptable-interrupts

-preemptable-interrupts
Specify functions that represent preemptable interrupts

Syntax

-preemptable-interrupts function1[,function2[,...]]

Description

-preemptable-interrupts function1[,function2[,...]] specifies functions
that represent preemptable interrupts.

The function acts as an interrupt in every way except that it can be interrupted by other
interrupts, preemptable or nonpreemptable.

To specify a function as a preemptable interrupt, you must first specify the following
options:

• Configure multitasking manually
• Interrupts (-interrupts): Specify the function name.

The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

See Also
-non-preemptable-tasks | Cyclic tasks (-cyclic-tasks) | Interrupts (-
interrupts) | Entry points (-entry-points) | Critical section details (-critical-
section-begin -critical-section-end) | Temporally exclusive tasks (-
temporal-exclusions-file)

Related Examples
• “Specify Analysis Options”

2-15

2 Polyspace Command-Line Options

• “Set Up Multitasking Analysis Manually”

Introduced in R2016b

2-16

 -prog

-prog
Specify name of project

Syntax

-prog projectName

Description

-prog projectName specifies the name of your Polyspace project. This name must use
only letters, numbers, underscores (_), dashes (-), or periods (.).

Examples

Assign a session name to your Polyspace Project.

polyspace-bug-finder-nodesktop -prog MyApp

See Also
-author | -date | polyspaceBugFinder

2-17

2 Polyspace Command-Line Options

-report-output-name
Specify name of report

Syntax

-report-output-name reportName

Description

-report-output-name reportName specifies the name of an analysis report.

The default name for a report is Prog_Template.Format:

• Prog is the name of the project specified by -prog.
• TemplateName is the type of report template specified by -report-template.
• Format is the file extension for the report specified by -report-output-format.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Specify the name of the analysis report.

polyspace-bug-finder-nodesktop -report-template Developer

 -report-output-name Airbag_v3.doc

See Also
Output format (-report-output-format) | Report template (-report-template) |
polyspaceBugFinder

2-18

 -results-dir

-results-dir
Specify the results folder

Syntax

-results-dir

Description

-results-dir specifies where to save the analysis results. The default location at the
command line is the current folder.

If you are running analysis in the user interface, see “Specify Results Folder”.

Examples

Specify to store your results in the RESULTS folder.

polyspace-bug-finder-nodesktop -results-dir RESULTS ...

 export RESULTS=results_'date + %d%B_%HH%M_%A'

polyspace-bug-finder-nodesktop -results-dir 'pwd'/$RESULTS

See Also
polyspaceBugFinder

2-19

2 Polyspace Command-Line Options

-scheduler
Specify cluster or job scheduler

Syntax

-scheduler schedulingOption

Description

-scheduler schedulingOption specifies the head node of the cluster or MATLAB job
scheduler on the node host. Use this command to manage the cluster, or to specify where
to run batch analyses.

Examples

Run a batch analysis on a remote server.

polyspace-bug-finder-nodesktop -batch -scheduler NodeHost

polyspace-bug-finder-nodesktop -batch -scheduler 192.168.1.124:12400

polyspace-bug-finder-nodesktop -batch -scheduler MJSName@NodeHost

polyspace-job-manager listjobs -scheduler NodeHost

See Also
polyspaceBugFinder | polyspaceJobsManager | polyspaceJobsManager

2-20

 -sources

-sources
Specify source files

Syntax

-sources file1[,file2,...]

-sources file1 -sources file2

Description

-sources file1[,file2,...] or -sources file1 -sources file2 specifies the
list of source files that you want to analyze. You can use standard UNIX wildcards with
this option to specify your sources.

The source files are compiled in the order in which they are specified.

Examples

Analyze the files mymain.c, funAlgebra.c, and funGeometry.c.

polyspace-bug-finder-nodesktop -sources mymain.c

 -sources funAlgebra.c -sources funGeometry.c

See Also
polyspaceBugFinder

2-21

2 Polyspace Command-Line Options

-sources-list-file
Specify file containing list of sources

Syntax

-sources-list-file file_path

Description

-sources-list-file file_path specifies the absolute path to a text file that lists
each file name that you want to analyze.

To specify your sources in the text file, on each line, specify the absolute path to a source
file. For example:

C:\Sources\myfile.c

C:\Sources2\myfile2.c

This option is available only in batch analysis mode.

Examples

Run analysis on files listed in files.txt.

polyspace-bug-finder-nodesktop -batch -scheduler NODEHOST

 -sources-list-file "C:\Analysis\files.txt"

polyspace-bug-finder-nodesktop -batch -scheduler NODEHOST

 -sources-list-file "/home/polyspace/files.txt"

See Also
polyspaceBugFinder

2-22

 -submit-job-from-previous-compilation-results

-submit-job-from-previous-compilation-results

Specify that the analysis job must be resubmitted without recompilation

Syntax

-submit-job-from-previous-compilation-results

Description

-submit-job-from-previous-compilation-results specifies that the Polyspace
analysis must start after the compilation phase with compilation results from a
previous analysis. If a remote analysis stops after compilation, for instance because of
communication problems between the server and client computers, use this option.

When you perform a remote analysis:

1 On the local host computer, the Polyspace software performs code compilation and
coding rule checking.

2 The Parallel Computing Toolbox™ software submits the analysis job to the MATLAB
job scheduler (MJS) on the head node of the MATLAB Distributed Computing Server
cluster.

3 The head node of the MATLAB Distributed Computing Server cluster assigns the
verification job to a worker node, where the remaining phases of the Polyspace
analysis occur.

If an analysis stops after completing the first step and you restart the analysis, use
this option to reuse compilation results from the previous analysis. You thereby avoid
restarting the analysis from the compilation phase.

If previous compilation results do not exist in the current folder, an error occurs. Remove
the option and restart analysis from the compilation phase.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

2-23

2 Polyspace Command-Line Options

Examples

Specify remote analysis with compilation results from a previous analysis.

polyspace-bug-finder-nodesktop -batch -scheduler localhost -submit-job-from-previous-compilation-results

See Also
polyspaceBugFinder

2-24

 -termination-functions

-termination-functions
Specify process termination functions

Syntax

-termination-functions function1[,function2[,...]]

Description

-termination-functions function1[,function2[,...]] specifies functions that
behave like the exit function and terminate your program.

Use this option to specify program termination functions that are declared but not
defined in your code.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Polyspace detects an Integer division by zero defect in the following code because it
does not recognize that my_exit terminates the program.

void my_exit();

double reciprocal(int val) {

 if(val==0)

 my_exit();

 return (1/val);

}

To prevent Polyspace from flagging the division operation, use the -termination-
functions option:

polyspace-bug-finder-nodesktop -termination-functions my_exit

See Also
polyspaceBugFinder

2-25

http://www.cplusplus.com/reference/cstdlib/exit/

2 Polyspace Command-Line Options

-tmp-dir-in-results-dir
Keep temporary files in results folder

Syntax

-tmp-dir-in-results-dir

Description

-tmp-dir-in-results-dir keeps temporary files in the results folder. By default,
temporary files are stored in the standard /temp or C:\Temp folder. This option stores
the temporary files in a subfolder of the results folder. Use this option only when the
temporary folder partition does not have enough disk space. If the results folder is
mounted on a network drive, this option can slow down your processor.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Store temporary files in the results folder.

polyspace-bug-finder-nodesktop -tmp-dir-in-results-dir

See Also
polyspaceBugFinder

2-26

 -v[ersion]

-v[ersion]
Display Polyspace version number

Syntax

-v

-version

Description

-v or -version displays the version number of your Polyspace product.

Examples

Display the version number and release of your Polyspace product.

polyspace-bug-finder-nodesktop -v

See Also
polyspaceBugFinder

2-27

3

Checks

3 Checks

*this not returned in copy assignment operator
operator= method does not return a pointer to the current object

Description

*this not returned from copy assignment operator occurs when assignment
operators such as operator= and operator+= do not return a reference to *this,
where this is a pointer to the current object. If the operator= method does not return
*this, it means that a=b or a.operator=(b) is not returning the assignee a following
the assignment.

For instance:

• The operator returns its parameter instead of a reference to the current object.

That is, the operator has a form MyClass & operator=(const MyClass & rhs)
{ ... return rhs; } instead of MyClass & operator=(const MyClass &
rhs) { ... return *this; }.

• The operator returns by value and not reference.

That is, the operator has a form MyClass operator=(const MyClass & rhs)
{ ... return *this; } instead of MyClass & operator=(const MyClass &
rhs) { ... return *this; }.

Risk

Users typically expect object assignments to behave like assignments between built-in
types and expect an assignment to return the assignee. For instance, a right-associative
chained assignment a=b=c requires that b=c return the assignee b following the
assignment. If your assignment operator behaves differently, users of your class can face
unexpected consequences.

The unexpected consequences occur when the assignment is part of another statement.
For instance:

• If the operator= returns its parameter instead of a reference to the current object,
the assignment a=b returns b instead of a. If the operator= performs a partial

3-2

 *this not returned in copy assignment operator

assignment of data members, following an assignment a=b, the data members of
a and b are different. If you or another user of your class read the data members
of the return value and expect the data members of a, you might have unexpected
results. For an example, see “Return Value of operator= Same as Argument” on
page 3-3.

• If the operator= method returns *this by value and not reference, a copy of *this
is returned. If you expect to modify the result of the assignment using a statement
such as (a=b).modifyValue(), you modify a copy of a instead of a itself.

Fix

Return *this from your assignment operators.

Examples

Return Value of operator= Same as Argument

class MyClass {

 public:

 MyClass(bool b, int i): m_b(b), m_i(i) {}

 const MyClass& operator=(const MyClass& obj) {

 if (&obj!=this) {

 /* Note: Only m_i is copied. m_b retains its original value. */

 m_i = obj.m_i;

 }

 return obj;

 }

 bool isOk() const { return m_b;}

 int getI() const { return m_i;}

 private:

 bool m_b;

 int m_i;

};

void main() {

 MyClass r0(true, 0), r1(false, 1);

 /* Object calling isOk is r0 and the if block executes. */

 if ((r1 = r0).isOk()) {

 /* Do something */

 }

3-3

3 Checks

}

In this example, the operator operator= returns its current argument instead of a
reference to *this.

Therefore, in main, the assignment r1 = r0 returns r0 and not r1. Because the
operator= does not copy the data member m_b, the value of r0.m_b and r1.m_b are
different. The following unexpected behavior occurs.

What You Might Expect What Actually Happens

• The statement (r1 = r0).isOk()
returns r1.m_b which has value false

• The if block does not execute.

• The statement (r1 = r0).isOk()
returns r0.m_b which has value true

• The if block executes.

Correction — Return *this

One possible correction is to return *this from operator=.

class MyClass {

 public:

 MyClass(bool b, int i): m_b(b), m_i(i) {}

 const MyClass& operator=(const MyClass& obj) {

 if (&obj!=this) {

 /* Note: Only m_i is copied. m_b retains its original value. */

 m_i = obj.m_i;

 }

 return *this;

 }

 bool isOk() const { return m_b;}

 int getI() const { return m_i;}

 private:

 bool m_b;

 int m_i;

};

void main() {

 MyClass r0(true, 0), r1(false, 1);

 /* Object calling isOk is r0 and the if block executes. */

 if ((r1 = r0).isOk()) {

 /* Do something */

 }

}

3-4

 *this not returned in copy assignment operator

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: return_not_ref_to_this
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2015b

3-5

3 Checks

Absorption of float operand
One addition or subtraction operand is absorbed by the other operand

Description

Absorption of float operand occurs when one operand of an addition or subtraction
operation is always negligibly small compared to the other operand. Therefore, the result
of the operation is always equal to the value of the larger operand, making the operation
redundant.

Risk

Redundant operations waste execution cycles of your processor.

The absorption of a float operand can indicate design issues elsewhere in the code. It is
possible that the developer expected a different range for one of the operands and did not
expect the redundancy of the operation. However, the operand range is different from
what the developer expects because of issues elsewhere in the code.

Fix

See if the operand ranges are what you expect. To see the ranges, place your cursor on
the operation.

• If the ranges are what you expect, justify why you have the redundant operation in
place. For instance, the code is only partially written and you anticipate other values
for one or both of the operands from future unwritten code.

If you cannot justify the redundant operation, remove it.
• If the ranges are not what you expect, in your code, trace back to see where the ranges

come from. To begin your traceback, search for instances of the operand in your
code. Browse through previous instances of the operand and determine where the
unexpected range originates.

To determine when one operand is negligible compared to the other operand, the defect
uses rules based on IEEE 754 standards. To fix the defect, instead of using the actual
rules, you can use this heuristic: the ratio of the larger to the smaller operand must be

3-6

 Absorption of float operand

less than 2p-1 at least for some values. Here, p is equal to 24 for 32-bit precision and 53
for 64-bit precision. To determine the precision, the defect uses your specification for
Target processor type (-target).

This defect appears only if one operand is always negligibly smaller than the other
operand. To see instances of subnormal operands or results, use the check Subnormal
Float in Polyspace Code Prover.

Examples

One Addition Operand Negligibly Smaller Than The Other Operand

#include <stdlib.h>

float get_signal(void);

void do_operation(float);

float input_signal1(void) {

 float temp = get_signal();

 if(temp > 0. && temp < 1e-30)

 return temp;

 else {

 /* Reject value */

 exit(EXIT_FAILURE);

 }

}

float input_signal2(void) {

 float temp = get_signal();

 if(temp > 1.)

 return temp;

 else {

 /* Reject value */

 exit(EXIT_FAILURE);

 }

}

void main() {

 float signal1 = input_signal1();

 float signal2 = input_signal2();

 float super_signal = signal1 + signal2;

3-7

3 Checks

 do_operation(super_signal);

}

In this example, the defect appears on the addition because the operand signal1 is in
the range (0,1e-30) but signal2 is greater than 1.

Correction — Remove Redundant Operation

One possible correction is to remove the redundant addition operation. In the following
corrected code, the operand signal2 and its associated code is also removed from
consideration.

#include <stdlib.h>

float get_signal(void);

void do_operation(float);

float input_signal1(void) {

 float temp = get_signal();

 if(temp > 0. && temp < 1e-30)

 return temp;

 else {

 /* Reject value */

 exit(EXIT_FAILURE);

 }

}

void main() {

 float signal1 = input_signal1();

 do_operation(signal1);

}

Correction — Verify Operand Range

Another possible correction is to see if the operand ranges are what you expect. For
instance, if one of the operand range is not supposed to be negligibly small, fix the issue
causing the small range. In the following corrected code, the range (0,1e-2) is imposed
on signal2 so that it is not always negligibly small as compared to signal1.

#include <stdlib.h>

float get_signal(void);

void do_operation(float);

float input_signal1(void) {

3-8

 Absorption of float operand

 float temp = get_signal();

 if(temp > 0. && temp < 1e-2)

 return temp;

 else {

 /* Reject value */

 exit(EXIT_FAILURE);

 }

}

float input_signal2(void) {

 float temp = get_signal();

 if(temp > 1.)

 return temp;

 else {

 /* Reject value */

 exit(EXIT_FAILURE);

 }

}

void main() {

 float signal1 = input_signal1();

 float signal2 = input_signal2();

 float super_signal = signal1 + signal2;

 do_operation(super_signal);

}

Result Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: float_absorption
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”

3-9

3 Checks

• “Review and Fix Results”

External Websites
• CWE 682
• CWE 873
• CERT C — FLP00-C: Understand the limitations of floating point numbers

Introduced in R2016b

3-10

https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/display/c/FLP00-C.+Understand+the+limitations+of+floating-point+numbers

 Arithmetic operation with NULL pointer

Arithmetic operation with NULL pointer
Arithmetic operation performed on NULL pointer

Description

Arithmetic operation with NULL pointer occurs when an arithmetic operation
involves a pointer whose value is NULL.

Examples

Arithmetic Operation with NULL Pointer Error

#include<stdlib.h>

int Check_Next_Value(int *loc, int val)

 {

 int *ptr = loc, found = 0;

 if (ptr==NULL)

 {

 ptr++;

 /* Defect: NULL pointer shifted */

 if (*ptr==val) found=1;

 }

 return(found);

 }

When ptr is a NULL pointer, the code enters the if statement body. Therefore, a NULL
pointer is shifted in the statement ptr++.

Correction — Avoid NULL Pointer Arithmetic

One possible correction is to perform the arithmetic operation when ptr is not NULL.

#include<stdlib.h>

3-11

3 Checks

int Check_Next_Value(int *loc, int val)

 {

 int *ptr = loc, found = 0;

 /* Fix: Perform operation when ptr is not NULL */

 if (ptr!=NULL)

 {

 ptr++;

 if (*ptr==val) found=1;

 }

 return(found);

 }

Check Information
Group: Static memory
Language: C | C++
Default: Off
Command-Line Syntax: null_ptr_arith
Impact: Low

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Null pointer

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CERT C — EXP34-C: Do not dereference null pointers

Introduced in R2013b

3-12

https://www.securecoding.cert.org/confluence/display/c/EXP34-C.+Do+not+dereference+null+pointers

 Array access out of bounds

Array access out of bounds
Array index outside bounds during array access

Description

Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.

Examples

Array Access Out of Bounds Error

#include <stdio.h>

void fibonacci(void)

{

 int i;

 int fib[10];

 for (i = 0; i < 10; i++)

 {

 if (i < 2)

 fib[i] = 1;

 else

 fib[i] = fib[i-1] + fib[i-2];

 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);

 /* Defect: Value of i is greater than allowed value of 9 */

}

The array fib is assigned a size of 10. An array index for fib has allowed values of
[0,1,2,...,9]. The variable i has a value 10 when it comes out of the for-loop.
Therefore, the printf statement attempts to access fib[10] through i.

Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

3-13

3 Checks

#include <stdio.h>

void fibonacci(void)

{

 int i;

 int fib[10];

 for (i = 0; i < 10; i++)

 {

 if (i < 2)

 fib[i] = 1;

 else

 fib[i] = fib[i-1] + fib[i-2];

 }

 /* Fix: Print fib[9] instead of fib[10] */

 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);

}

The printf statement accesses fib[9] instead of fib[10].

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: out_bound_array
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Pointer access out of bounds

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

3-14

 Array access out of bounds

External Websites
• CWE-119: Improper Restriction of Operations within the Bounds of a Memory

Buffer
• CWE-466: Return of Pointer Value Outside of Expected Range
• CERT C — ARR30-C: Do not form or use out-of-bounds pointers or array subscripts
• CERT C — ARR38-C: Guarantee that library functions do not form invalid pointers
• CERT C — API02-C: Functions that read or write to or from an array should take

an argument to specify the source or target size
• CERT C — STR31-C: Guarantee that storage for strings has sufficient space for

character data and null terminator

Introduced in R2013b

3-15

http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/466.html
https://www.securecoding.cert.org/confluence/display/c/ARR30-C.+Do+not+form+or+use+out-of-bounds+pointers+or+array+subscripts
https://www.securecoding.cert.org/confluence/display/c/ARR38-C.+Guarantee+that+library+functions+do+not+form+invalid+pointers
https://www.securecoding.cert.org/confluence/display/c/API02-C.+Functions+that+read+or+write+to+or+from+an+array+should+take+an+argument+to+specify+the+source+or+target+size
https://www.securecoding.cert.org/confluence/display/c/API02-C.+Functions+that+read+or+write+to+or+from+an+array+should+take+an+argument+to+specify+the+source+or+target+size
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

3 Checks

Assertion
Failed assertion statement

Description

Assertion occurs when you use an assert, and the asserted expression is or could be
false.

Note: Polyspace does not flag assert(0) as an assertion defect because these
statements are commonly used to disable certain sections of code.

Examples

Check Assertion on Unsigned Integer

#include <assert.h>

void asserting_x(unsigned int theta) {

 theta =+ 5;

 assert(theta < 0);

}

In this example, the assert function checks if the input variable, theta, is less than or
equal to zero. The assertion fails because theta is an unsigned integer, so the value at
the beginning of the function is at least zero. The += statement increases this positive
value by five. Therefore, the range of theta is [5..MAX_INT]. theta is always greater
than zero.

Correction — Change Assert Expression

One possible correction is to change the assertion expression. By changing the less-than-
or-equal-to sign to a greater-than-or-equal-to sign, the assertion does not fail.

#include <assert.h>

void asserting_x(unsigned int theta) {

3-16

 Assertion

 theta =+ 5;

 assert(theta > 0);

}

Correction — Fix Code

One possible correction is to fix the code related to the assertion expression. If the
assertion expression is true, fix your code so the assertion passes.

#include <assert.h>

#include <stdlib.h>

void asserting_x(int theta) {

 theta = -abs(theta);

 assert(theta < 0);

}

Asserting Zero

#include <assert.h>

#define FLAG 0

int main(void){

 int i_test_z = 0;

 float f_test_z = (float)i_test_z;

 assert(i_test_z);

 assert(f_test_z);

 assert(FLAG);

 return 0;

}

In this example, Polyspace does not flag assert(FLAG) as a violation because a macro
defines FLAG as 0. The Polyspace Bug Finder assertion checker does not flag assertions
with a constant zero parameter, assert(0). These types of assertions are commonly
used as dynamic checks during runtime. By inserting assert(0), you indicate that the
program must not reach this statement during run time, otherwise the program crashes.

However, the assertion checker does flag failed assertions caused by a variable
value equal to zero, as seen in the example with assert(i_test_z) and
assert(f_test_z).

3-17

3 Checks

Check Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: assert
Impact: High

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2013b

3-18

 Bad file access mode or status

Bad file access mode or status
Access mode argument of function in fopen or open group is invalid

Description

Bad file access mode or status occurs when you use functions in the fopen or open
group with invalid or incompatible file access modes, file creation flags, or file status
flags as arguments. For instance, for the open function, examples of valid:

• Access modes include O_RDONLY, O_WRONLY, and O_RDWR
• File creation flags include O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC.
• File status flags include O_APPEND, O_ASYNC, O_CLOEXEC, O_DIRECT, O_DIRECTORY,

O_LARGEFILE, O_NOATIME, O_NOFOLLOW, O_NONBLOCK, O_NDELAY, O_SHLOCK,
O_EXLOCK, O_FSYNC, O_SYNC and so on.

The defect can occur in the following situations.

Situation Risk Fix

You pass an empty or
invalid access mode to the
fopen function.

According to the ANSI C
standard, the valid access
modes for fopen are:

• r,r+
• w,w+
• a,a+
• rb, wb, ab
• r+b, w+b, a+b
• rb+, wb+, ab+

fopen has undefined
behavior for invalid access
modes.

Some implementations
allow extension of the access
mode such as:

• GNU: rb
+cmxe,ccs=utf

• Visual C++: a+t, where
t specifies a text mode.

However, your access mode
string must begin with one
of the valid sequences.

Pass a valid access mode to
fopen.

You pass the status flag
O_APPEND to the open
function without combining

O_APPEND indicates that
you intend to add new
content at the end of a

Pass either O_APPEND|
O_WRONLY or O_APPEND|
O_RDWR as access mode.

3-19

3 Checks

Situation Risk Fix

it with either O_WRONLY or
O_RDWR.

file. However, without
O_WRONLY or O_RDWR, you
cannot write to the file.

The open function does not
return -1 for this logical
error.

You pass the status flags
O_APPEND and O_TRUNC
together to the open
function.

O_APPEND indicates that
you intend to add new
content at the end of a
file. However, O_TRUNC
indicates that you intend
to truncate the file to zero.
Therefore, the two modes
cannot operate together.

The open function does not
return -1 for this logical
error.

Depending on what you
intend to do, pass one of the
two modes.

You pass the status flag
O_ASYNC to the open
function.

On certain
implementations, the
mode O_ASYNC does not
enable signal-driven I/O
operations.

Use the fcntl(pathname,
F_SETFL, O_ASYNC);

instead.

Examples

Invalid Access Mode with fopen

#include <stdio.h>

void func(void) {

 FILE *file = fopen("data.txt", "rw");

 if(file!=NULL) {

 fputs("new data",file);

 fclose(file);

 }

3-20

 Bad file access mode or status

}

In this example, the access mode rw is invalid. Because r indicates that you open the file
for reading and w indicates that you create a new file for writing, the two access modes
are incompatible.

Correction — Use Either r or w as Access Mode

One possible correction is to use the access mode corresponding to what you intend to do.

#include <stdio.h>

void func(void) {

 FILE *file = fopen("data.txt", "w");

 if(file!=NULL) {

 fputs("new data",file);

 fclose(file);

 }

}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: bad_file_access_mode_status
Impact: Medium

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE 628
• CWE 686

3-21

http://cwe.mitre.org/data/definitions/628.html
http://cwe.mitre.org/data/definitions/686.html

3 Checks

• CERT C — FIO11-C

Introduced in R2015b

3-22

https://www.securecoding.cert.org/confluence/x/swA1

 Base class assignment operator not called

Base class assignment operator not called
Copy assignment operator does not call copy assignment operators of base subobjects

Description

Base class assignment operator not called occurs when a derived class copy
assignment operator does not call the copy assignment operator of its base class.

Risk

If this defect occurs, unless you are initializing the base class data members explicitly in
the derived class assignment operator, the operator initializes the members implicitly by
using the default constructor of the base class. Therefore, it is possible that the base class
data members do not get assigned the right values.

If users of your class expect your assignment operator to perform a complete assignment
between two objects, they can face unintended consequences.

Fix

Call the base class copy assignment operator from the derived class copy assignment
operator.

Even if the base class data members are not private, and you explicitly initialize the
base class data members in the derived class copy assignment operator, replace this
explicit initialization with a call to the base class copy assignment operator. Otherwise,
determine why you retain the explicit initialization.

Examples

Base Class Copy Assignment Operator Not Called

class Base0 {

public:

 Base0();

 virtual ~Base0();

3-23

3 Checks

 Base0& operator=(const Base0&);

private:

 int _i;

};

class Base1 {

public:

 Base1();

 virtual ~Base1();

 Base1& operator=(const Base1&);

private:

 int _i;

};

class Derived: public Base0, Base1 {

public:

 Derived();

 ~Derived();

 Derived& operator=(const Derived& d) {

 if (&d == this) return *this;

 Base0::operator=(d);

 _j = d._j;

 return *this;

 }

private:

 int _j;

};

In this example, the class Derived is derived from two classes Base0 and Base1. In the
copy assignment operator of Derived, only the copy assignment operator of Base0 is
called. The copy assignment operator of Base1 is not called.

The defect appears on the copy assignment operator of the derived class. Following are
some tips for navigating in the source code:

• To find the derived class definition, right-click the derived class name and select Go
To Definition.

• To find the base class definition, first navigate to the derived class definition. In the
derived class definition, right-click the base class name and select Go To Definition.

• To find the definition of the base class copy assignment operator, first navigate to the
base class definition. In the base class definition, right-click the operator name and
select Go To Definition.

3-24

 Base class assignment operator not called

Correction — Call Base Class Copy Assignment Operator

If you want your copy assignment operator to perform a complete assignment, one
possible correction is to call the copy assignment operator of class Base1.

class Base0 {

public:

 Base0();

 virtual ~Base0();

 Base0& operator=(const Base0&);

private:

 int _i;

};

class Base1 {

public:

 Base1();

 virtual ~Base1();

 Base1& operator=(const Base1&);

private:

 int _i;

};

class Derived: public Base0, Base1 {

public:

 Derived();

 ~Derived();

 Derived& operator=(const Derived& d) {

 if (&d == this) return *this;

 Base0::operator=(d);

 Base1::operator=(d);

 _j = d._j;

 return *this;

 }

private:

 int _j;

};

Result Information
Group: Object oriented
Language: C++
Default: On

3-25

3 Checks

Command-Line Syntax: missing_base_assign_op_call
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Copy constructor not called in initialization list

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2015b

3-26

 Base class destructor not virtual

Base class destructor not virtual
Class cannot behave polymorphically for deletion of derived class objects

Description

Base class destructor not virtual occurs when a class has virtual functions but not
a virtual destructor.

Risk

The presence of virtual functions indicates that the class is intended for use as a
base class. However, if the class does not have a virtual destructor, it cannot behave
polymorphically for deletion of derived class objects.

If a pointer to this class refers to a derived class object, and you use the pointer to delete
the object, only the base class destructor is called. Additional resources allocated in the
derived class are not released and can cause a resource leak.

Fix

One possible fix is to always use a virtual destructor in a class that contains virtual
functions.

Examples

Base Class Destructor Not Virtual

class Base {

 public:

 Base(): _b(0) {};

 virtual void update() {_b += 1;};

 private:

 int _b;

};

class Derived: public Base {

3-27

3 Checks

 public:

 Derived(): _d(0) {};

 ~Derived() {_d = 0;};

 virtual void update() {_d += 1;};

 private:

 int _d;

};

In this example, the class Base does not have a virtual destructor. Therefore, if a
Base* pointer points to a Derived object that is allocated memory dynamically, and the
delete operation is performed on that Base* pointer, the Base destructor is called. The
memory allocated for the additional member _d is not released.

The defect appears on the base class definition. Following are some tips for navigating in
the source code:

• To find classes derived from the base class, right-click the base class name and select
Search For All References. Browse through each search result to find derived class
definitions.

• To find if you are using a pointer or reference to a base class to point to a derived
class object, right-click the base class name and select Search For All References.
Browse through search results that start with Base* or Base& to locate pointers or
references to the base class. You can then see if you are using a pointer or reference to
point to a derived class object.

Correction — Make Base Class Destructor Virtual

One possible correction is to declare a virtual destructor for the class Base.

class Base {

 public:

 Base(): _b(0) {};

 virtual ~Base() {_b = 0;};

 virtual void update() {_b += 1;};

 private:

 int _b;

};

class Derived: public Base {

 public:

 Derived(): _d(0) {};

 ~Derived() {_d = 0;};

 virtual void update() {_d += 1;};

3-28

 Base class destructor not virtual

 private:

 int _d;

};

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: dtor_not_virtual
Impact: Medium

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CERT C++: OOP52-CPP — Do not delete a polymorphic object without a virtual

destructor

Introduced in R2015b

3-29

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=5111889
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=5111889

3 Checks

Buffer overflow from incorrect string format specifier
String format specifier causes buffer argument of standard library functions to overflow

Description

Buffer overflow from incorrect string format specifier occurs when the format
specifier argument for functions such as sscanf leads to an overflow or underflow in the
memory buffer argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size,
an overflow occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

Examples

Memory Buffer Overflow

#include <stdio.h>

void func (char *str[]) {

 char buf[32];

 sscanf(str[1], "%33c", buf);

}

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c
causes a buffer overflow.

Correction — Use Smaller Precision in Format Specifier

One possible correction is to use a smaller precision in the format specifier.

3-30

 Buffer overflow from incorrect string format specifier

#include <stdio.h>

void func (char *str[]) {

 char buf[32];

 sscanf(str[1], "%32c", buf);

}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: str_format_buffer_overflow
Impact: High

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE–124: Buffer Underwrite (Buffer Underflow)
• CWE–125: Out-of-bounds Read
• CWE–126: Buffer Over-read
• CWE–127: Buffer Under-read
• CERT C — ARR38-C: Guarantee that library functions do not form invalid pointers
• CERT C — STR03-C: Do not inadvertently truncate a string
• CERT C — STR31-C: Guarantee that storage for strings has sufficient space for

character data and null terminator

Introduced in R2015b

3-31

http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/126.html
http://cwe.mitre.org/data/definitions/127.html
https://www.securecoding.cert.org/confluence/display/c/ARR38-C.+Guarantee+that+library+functions+do+not+form+invalid+pointers
https://www.securecoding.cert.org/confluence/display/c/STR03-C.+Do+not+inadvertently+truncate+a+string
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

3 Checks

Call to memset with unintended value
memset or wmemset used with possibly incorrect arguments

Description

Call to memset with unintended value occurs when Polyspace Bug Finder detects a
use of the memset or wmemset function with possibly incorrect arguments.

void *memset (void *ptr, int value, size_t num) fills the first num bytes of
the memory block that ptr points to with the specified value. If the argument value is
incorrect, the memory block is initialized with an unintended value.

The unintended initialization can occur in the following cases.

Issue Risk Possible Fix

The second argument is '0'
instead of 0 or '\0'.

The ASCII value
of character '0' is
48 (decimal), 0x30
(hexadecimal), 069 (octal)
but not 0 (or '\0') .

If you want to initialize with
'0', use one of the ASCII
values. Otherwise, use 0 or
'\0'.

The second and third
arguments are probably
reversed. For instance, the
third argument is a literal
and the second argument is
not a literal.

If the order is reversed, a
memory block of unintended
size is initialized with
incorrect arguments.

Reverse the order of the
arguments.

The second argument
cannot be represented in a
byte.

If the second argument
cannot be represented in a
byte, and you expect each
byte of a memory block to be
filled with that argument,
the initialization does not
occur as intended.

Apply a bit mask to the
argument to produce a
wrapped or truncated result
that can be represented in
a byte. When you apply a
bit mask, make sure that it
produces an expected result.

For instance, replace
memset(a, -13,

3-32

 Call to memset with unintended value

Issue Risk Possible Fix

sizeof(a)) with
memset(a, (-13) &

0xFF, sizeof(a)).

Examples

Value Cannot Be Represented in a Byte

#include <string.h>

#define SIZE 32

void func(void) {

 char buf[SIZE];

 int c = -2;

 memset(buf, (char)c, sizeof(buf));

}

In this example, (char)c cannot be represented in a byte.

Correction — Apply Cast

One possible correction is to apply a cast so that the result can be represented in a byte.
However, check that the result of the cast is an acceptable initialization value.

#include <string.h>

#define SIZE 32

void func(void) {

 char buf[SIZE];

 int c = -2;

 memset(buf, (unsigned char)c, sizeof(buf));

}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: memset_invalid_value

3-33

3 Checks

Impact: Low

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Use of memset with size argument zero

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-665: Improper Initialization

Introduced in R2015b

3-34

http://cwe.mitre.org/data/definitions/665.html

 Closing a previously closed resource

Closing a previously closed resource
Function closes a previously closed stream

Description

Closing a previously closed resource occurs when a function attempts to close a
stream that was closed earlier in your code and not reopened later.

Risk

The standard states that the value of a FILE* pointer is indeterminate after you close
the stream associated with it. Performing the close operation on the FILE* pointer again
can cause unwanted behavior.

Fix

Remove the redundant close operation.

Examples

Closing Previously Closed Resource

#include <stdio.h>

void func(char* data) {

 FILE* fp = fopen("file.txt", "w");

 if(fp!=NULL) {

 if(data)

 fputc(*data,fp);

 else

 fclose(fp);

 }

 fclose(fp);

}

In this example, if fp is not NULL and data is NULL, the fclose operation occurs on fp
twice in succession.

3-35

3 Checks

Correction — Remove Close Operation

One possible correction is to remove the last fclose operation. To avoid a resource leak,
you must also place an fclose operation in the if(data) block.

#include <stdio.h>

void func(char* data) {

 FILE* fp = fopen("file.txt", "w");

 if(fp!=NULL) {

 if(data) {

 fputc(*data,fp);

 fclose(fp);

 }

 else

 fclose(fp);

 }

}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: double_resource_close
Impact: High

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE 672: Operation on a Resource after Expiration or Release
• CERT C — FIO46-C: Do not access a closed file

Introduced in R2015b

3-36

http://cwe.mitre.org/data/definitions/672.html
https://www.securecoding.cert.org/confluence/display/c/FIO46-C.+Do+not+access+a+closed+file

 Code deactivated by constant false condition

Code deactivated by constant false condition

Code segment deactivated by #if 0 directive or if(0) condition

Description

Code deactivated by constant false condition occurs when a block of code is
deactivated using a #if 0 directive or if(0) condition.

Examples

Code Deactivated by Constant False Condition Error

#include<stdio.h>

int Trim_Value(int* Arr,int Size,int Cutoff)

{

 int Count=0;

 for(int i=0;i < Size;i++){

 if(Arr[i]>Cutoff){

 Arr[i]=Cutoff;

 Count++;

 }

 }

 #if 0

 /* Defect: Code Segment Deactivated */

 if(Count==0){

 printf("Values less than cutoff.");

 }

 #endif

 return Count;

}

In the preceding code, the printf statement is placed within a #if #endif directive.
The software treats the portion within the directive as code comments and not compiled.

3-37

3 Checks

Correction — Change #if 0 to #if 1

Unless you intended to deactivate the printf statement, one possible correction is to
reactivate the block of code in the #if #endif directive. To reactivate the block, change
#if 0 to #if 1.

#include<stdio.h>

int Trim_Value(int* Arr,int Size,int Cutoff)

{

 int Count=0;

 for(int i=0;i < Size;i++)

 {

 if(Arr[i]>Cutoff)

 {

 Arr[i]=Cutoff;

 Count++;

 }

 }

 /* Fix: Replace #if 0 by #if 1 */

 #if 1

 if(Count==0)

 {

 printf("Values less than cutoff.");

 }

 #endif

 return Count;

}

Check Information
Group: Data flow
Language: C | C++
Default: off
Command-Line Syntax: deactivated_code
Impact: Low

3-38

 Code deactivated by constant false condition

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Dead code | Unreachable code | Useless if

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2013b

3-39

3 Checks

Copy constructor not called in initialization list
Copy constructor does not call copy constructors of some members or base classes

Description

Copy constructor not called in initialization list occurs when the copy constructor
of a class does not call the copy constructor of the following in its initialization list:

• One or more of its members.
• Its base classes when applicable.

The defect occurs even when a base class constructor is called instead of the base class
copy constructor.

Risk

The calls to the copy constructors can be done only from the initialization list. If the calls
are missing, it is possible that an object is only partially copied.

• If the copy constructor of a member is not called, it is possible that the member is not
copied.

• If the copy constructor of a base class is not called, it is possible that the base class
members are not copied.

Fix

If you want your copy constructor to perform a complete copy, call the copy constructor of
all members and all base classes in its initialization list.

Examples

Base Class Copy Constructor Not Called

class Base {

public:

3-40

 Copy constructor not called in initialization list

 Base();

 Base(int);

 Base(const Base&);

 virtual ~Base();

private:

 int ib;

};

class Derived:public Base {

public:

 Derived();

 ~Derived();

 Derived(const Derived& d): Base(), i(d.i) { }

private:

 int i;

};

In this example, the copy constructor of class Derived calls the default constructor, but
not the copy constructor of class Base.

The defect appears on the : symbol in the copy constructor definition. Following are some
tips for navigating in the source code:

• To navigate to the class definition, right-click a member that is initialized in the
constructor. Select Go To Definition. In the class definition, you see the class
members, including those members whose copy constructors are not called.

• To navigate to a base class definition, first navigate to the derived class definition. In
the derived class definition, where the derived class inherits from a base class, right-
click the base class name and select Go To Definition.

Correction — Call Base Class Copy Constructor

One possible correction is to call the copy constructor of class Base from the initialization
list of the Derived class copy constructor.

class Base {

public:

 Base();

 Base(int);

 Base(const Base&);

 virtual ~Base();

private:

 int ib;

3-41

3 Checks

};

class Derived:public Base {

public:

 Derived();

 ~Derived();

 Derived(const Derived& d): Base(d), i(d.i) { }

private:

 int i;

};

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: missing_copy_ctor_call
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Base class assignment operator not called

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2015b

3-42

 Copy of overlapping memory

Copy of overlapping memory
Source and destination arguments of a copy function have overlapping memory

Description

Copy of overlapping memory occurs when there is a memory overlap between the
source and destination argument of a copy function such as memcpy or strcpy. For
instance, the source and destination arguments of strcpy are pointers to different
elements in the same string.

Risk

If there is memory overlap between the source and destination arguments of copy
functions, according to C standards, the behavior is undefined.

Fix

Determine if the memory overlap is what you want. If so, find an alternative function.
For instance:

• If you are using memcpy to copy values from one memory location to another, use
memmove instead of memcpy.

• If you are using strcpy to copy one string to another, use memmove instead of
strcpy, as follows:

s = strlen(source);

memmove(destination, source, s + 1);

strlen determines the string length without the null terminator. Therefore, you
must move s+1 bytes instead of s bytes.

Examples

Overlapping Copy

#include <string.h>

3-43

3 Checks

char str[] = {"ABCDEFGH"};

void my_copy() {

 strcpy(&str[0],(const char*)&str[2]);

}

In this example, because the source and destination argument are pointers to the same
string str, there is memory overlap between their allowed buffers.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: overlapping_copy
Impact: Medium

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Overlapping assignment

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-475: Undefined Behavior for Input to API
• CWE-628: Function Call with Incorrectly Specified Arguments
• CWE-687: Function Call with Incorrectly Specified Argument Value
• CERT C — EXP43-C: Avoid undefined behavior when using restrict-qualified

pointers

3-44

http://cwe.mitre.org/data/definitions/475.html
http://cwe.mitre.org/data/definitions/628.html
http://cwe.mitre.org/data/definitions/687.html
https://www.securecoding.cert.org/confluence/display/c/EXP43-C.+Avoid+undefined+behavior+when+using+restrict-qualified+pointers
https://www.securecoding.cert.org/confluence/display/c/EXP43-C.+Avoid+undefined+behavior+when+using+restrict-qualified+pointers

 Copy of overlapping memory

Introduced in R2015b

3-45

3 Checks

Data race
Multiple tasks perform unprotected non-atomic operations on shared variable

Description

Data race occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a read operation and another task performs a write

operation.
3 At least one operation is non-atomic. For data race on both atomic and non-atomic

operations, see Data race including atomic operations.

A non-atomic operation can translate into more than one machine instruction. For
instance:

• The operation can involve both a read and write operation. For example, var+
+ involves reading the value of var, increasing the value by one and writing the
increased value back to var.

• The operation can involve a 64-bit variable on a 32-bit target. For example, the
operation

long long var1, var2;

var1=var2;

involves two steps in copying the content of var2 to var1 on certain targets.

Polyspace uses the Pointer size for your Target processor type as the threshold to
compute atomicity. For instance, if you use i386 as your Target processor type, the
Pointer size is 32 bits, and Long long and Double sizes are both 64 bits. Therefore,
Polyspace considers copying one long long or double variable to another as non-
atomic.

• The operation can involve writing the return value of a function call to a shared
variable. For example, the operation x=func() involves calling func and writing the
return value of func to x.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Set Up Multitasking Analysis Manually”.

3-46

 Data race

Risk

Data race can result in unpredictable values of the shared variable because you do not
control the order of the operations in different tasks.

Fix

To fix this defect, protect the operations on the shared variable using critical sections
or temporal exclusion. See Critical section details (-critical-section-begin -
critical-section-end) and Temporally exclusive tasks (-temporal-exclusions-
file).

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access Protections
column shows existing protections on the calls. To see the function call sequence leading

to the conflicts, click the icon. For an example, see below.

Examples

Unprotected Operation on Global Variable from Multiple Tasks

int var;

void begin_critical_section(void);

void end_critical_section(void);

void increment(void) {

 var++;

}

void task1(void) {

 increment();

}

void task2(void) {

 increment();

}

3-47

3 Checks

void task3(void) {

 begin_critical_section();

 increment();

 end_critical_section();

}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification

Configure multitasking
manually on page 1-56
Entry points on page 1-57 task1

task2

task3

Starting procedure Ending procedureCritical section details on
page 1-64 begin_critical_section end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop

 -entry-points task1,task2,task3

 -critical-section-begin begin_critical_section:cs1

 -critical-section-end end_critical_section:cs1

In this example, the tasks task1, task2, and task3 call the function increment.
increment contains the operation var++ that can involve multiple machine instructions
including:

• Reading var.
• Writing an increased value to var.

These machine instructions, when executed from task1 and task2, can occur
concurrently in an unpredictable sequence. For example, reading var from task1 can
occur either before or after writing to var from task2. Therefore the value of var can be
unpredictable.

Though task3 calls increment inside a critical section, other tasks do not use the same
critical section. The operations in the critical section of task3 are not mutually exclusive
with operations in other tasks.

3-48

 Data race

Therefore, the three tasks are operating on a shared variable without common protection.
In your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry
point to the read or write operation. You also see that the operation starting from
task3 is in a critical section. The Access Protections entry shows the lock and unlock
function that begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

Correction — Place Operation in Critical Section

One possible correction is to place the operation in critical section. You can implement
the critical section in multiple ways. For instance:

3-49

3 Checks

• You can place var++ in a critical section. When task1 enters its critical section, the
other tasks cannot enter their critical sections until task1 leaves its critical section.
The operation var++ from the three tasks cannot interfere with each other.

To implement the critical section, in the function increment, place the operation var
++ between calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);

void end_critical_section(void);

void increment(void) {

 begin_critical_section();

 var++;

 end_critical_section();

}

void task1(void) {

 increment();

}

void task2(void) {

 increment();

}

void task3(void) {

 increment();

}

• You can place the call to increment in the same critical section in the three tasks.
When task1 enters its critical section, the other tasks cannot enter their critical
sections until task1 leaves its critical section. The calls to increment from the three
tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call increment between
calls to begin_critical_section and end_critical_section.

3-50

 Data race

int var;

void begin_critical_section(void);

void end_critical_section(void);

void increment(void) {

 var++;

}

void task1(void) {

 begin_critical_section();

 increment();

 end_critical_section();

}

void task2(void) {

 begin_critical_section();

 increment();

 end_critical_section();

}

void task3(void) {

 begin_critical_section();

 increment();

 end_critical_section();

}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value

Temporally exclusive
tasks on page 1-66

task1 task2 task3

On the command-line, you can use the following:

 polyspace-code-prover-nodesktop

 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

3-51

3 Checks

task1 task2 task3

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: data_race
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers) | Target processor type (-target) | Configure multitasking
manually | Entry points (-entry-points)

Polyspace Results
Data race including atomic operations | Data race through standard library function call
| Deadlock | Destruction of locked mutex | Double lock | Double unlock | Missing lock |
Missing unlock

More About
• “Set Up Multitasking Analysis Manually”

External Websites
• CWE-366: Race Condition within a Thread
• CERT C — CON00-C: Avoid race conditions with multiple threads
• CERT C — CON32-C: Prevent data races when accessing bit-fields from multiple

threads
• CERT C — POS49-C: When data must be accessed by multiple threads, provide a

mutex and guarantee no adjacent data is also accessed

Introduced in R2014b

3-52

http://cwe.mitre.org/data/definitions/366.html
https://www.securecoding.cert.org/confluence/display/c/CON00-C.+Avoid+race+conditions+with+multiple+threads
https://www.securecoding.cert.org/confluence/display/c/CON32-C.+Prevent+data+races+when+accessing+bit-fields+from+multiple+threads
https://www.securecoding.cert.org/confluence/display/c/CON32-C.+Prevent+data+races+when+accessing+bit-fields+from+multiple+threads
https://www.securecoding.cert.org/confluence/display/c/POS49-C.+When+data+must+be+accessed+by+multiple+threads%2C+provide+a+mutex+and+guarantee+no+adjacent+data+is+also+accessed
https://www.securecoding.cert.org/confluence/display/c/POS49-C.+When+data+must+be+accessed+by+multiple+threads%2C+provide+a+mutex+and+guarantee+no+adjacent+data+is+also+accessed

 Data race including atomic operations

Data race including atomic operations
Multiple tasks perform unprotected operations on shared variable

Description

Data race occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a read operation and another task performs a write

operation.

If you check for this defect, you can see data races on both atomic and non-atomic
operations. To see data races on non-atomic operations alone, select Data race.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Unprotected Atomic Operation on Global Variable from Multiple Tasks

#include<stdio.h>

int var;

void begin_critical_section(void);

void end_critical_section(void);

void task1(void) {

 var = 1;

}

void task2(void) {

 int local_var;

 local_var = var;

 printf("%d", local_var);

3-53

3 Checks

}

void task3(void) {

 begin_critical_section();

 /* Operations in task3 */

 end_critical_section();

}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification

Configure multitasking
manually on page 1-56
Entry points on page 1-57 task1

task2

task3

Starting procedure Ending procedureCritical section details on
page 1-64 begin_critical_section end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop

 -entry-points task1,task2,task3

 -critical-section-begin begin_critical_section:cs1

 -critical-section-end end_critical_section:cs1

In this example, the write operation var=1; in task task1 executes concurrently with
the read operation local_var=var; in task task2.

task3 uses a critical section that can be reused for the other tasks.

Correction — Place Operations in Critical Section

One possible correction is to place these operations in the same critical section:

• var=1; in task1
• local_var=var; in task2

3-54

 Data race including atomic operations

When task1 enters its critical section, the other tasks cannot enter their critical sections
until task1 leaves its critical section. Therefore, the two operations cannot execute
concurrently.

To implement the critical section, reuse the already existing critical section in
task3. Place the two operations between calls to begin_critical_section and
end_critical_section.

#include<stdio.h>

int var;

void begin_critical_section();

void end_critical_section();

void task1(void) {

 begin_critical_section();

 var = 1;

 end_critical_section();

}

void task2(void) {

 int local_var;

 begin_critical_section();

 local_var = var;

 end_critical_section();

 printf("%d", local_var);

}

void task3(void) {

 begin_critical_section();

 /* Operations in task3 */

 end_critical_section();

}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks task1 and task2 temporally exclusive.
Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

3-55

3 Checks

Option Value

Temporally exclusive
tasks on page 1-66

task1 task2

On the command-line, use the following:

 polyspace-code-prover-nodesktop

 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2

Check Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: data_race_all
Impact: Medium

See Also

Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry points (-entry-
points)

Polyspace Results
Data race | Data race through standard library function call | Deadlock | Destruction of
locked mutex | Double lock | Double unlock | Missing lock | Missing unlock

More About
• “Set Up Multitasking Analysis Manually”

External Websites
• CWE-366: Race Condition within a Thread

Introduced in R2014b

3-56

http://cwe.mitre.org/data/definitions/366.html

 Data race through standard library function call

Data race through standard library function call
Multiple tasks make unprotected calls to thread-unsafe standard library function

Description

Data race through standard library function call occurs when:

1 Multiple tasks call the same standard library function.

For instance, multiple tasks call the strerror function.
2 The calls are not protected using a common protection.

For instance, the calls are not protected by the same critical section.

Functions flagged by this defect are not guaranteed to be reentrant. A function is
reentrant if it can be interrupted and safely called again before its previous invocation
completes execution. If a function is not reentrant, multiple tasks calling the function
without protection can cause concurrency issues. For the list of functions that are
flagged, see CERT C — CON33-C: Avoid race conditions when using library functions.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Set Up Multitasking Analysis Manually”.

Risk

The functions flagged by this defect are nonreentrant because their implementations can
use global or static variables. When multiple tasks call the function without protection,
the function call from one task can interfere with the call from another task. The two
invocations of the function can concurrently access the global or static variables and
cause unpredictable results.

The calls can also cause more serious security vulnerabilities, such as abnormal
termination, denial-of-service attack, and data integrity violations.

Fix

To fix this defect, do one of the following:

3-57

https://www.securecoding.cert.org/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions

3 Checks

• Use a reentrant version of the standard library function if it exists.

For instance, instead of strerror(), use strerror_r() or strerror_s(). For
alternatives to functions flagged by this defect, see the documentation for CERT C —
CON33-C: Avoid race conditions when using library functions.

• Protect the function calls using common critical sections or temporal exclusion.

See Critical section details (-critical-section-begin -critical-section-
end) and Temporally exclusive tasks (-temporal-exclusions-file).

To identify existing protections that you can reuse, see the table and graphs
associated with the result. The table shows each pair of conflicting calls. The Access
Protections column shows existing protections on the calls. To see the function call

sequence leading to the conflicts, click the icon. For an example, see below.

Examples

Unprotected Call to Standard Library Function from Multiple Tasks

#include <errno.h>

#include <stdio.h>

#include <string.h>

void begin_critical_section(void);

void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {

 fpos_t pos;

 errno = 0;

 if (0 != fgetpos(fp, &pos)) {

 char *errmsg = strerror(errno);

 printf("Could not get the file position: %s\n", errmsg);

 }

}

void task1(void) {

 FILE* fptr1 = getFilePointer();

3-58

https://www.securecoding.cert.org/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions
https://www.securecoding.cert.org/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions

 Data race through standard library function call

 func(fptr1);

}

void task2(void) {

 FILE* fptr2 = getFilePointer();

 func(fptr2);

}

void task3(void) {

 FILE* fptr3 = getFilePointer();

 begin_critical_section();

 func(fptr3);

 end_critical_section();

}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification

Configure multitasking
manually on page 1-56
Entry points on page 1-57 task1

task2

task3

Starting procedure Ending procedureCritical section details on
page 1-64 begin_critical_section end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop

 -entry-points task1,task2,task3

 -critical-section-begin begin_critical_section:cs1

 -critical-section-end end_critical_section:cs1

In this example, the tasks, task1, task2 and task3, call the function func. func calls
the nonreentrant standard library function, strerror.

Though task3 calls func inside a critical section, other tasks do not use the same
critical section. Operations in the critical section of task3 are not mutually exclusive
with operations in other tasks.

3-59

3 Checks

These three tasks are calling a nonreentrant standard library function without common
protection. In your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry
point to the standard library function call. You also see that the call starting from
task3 is in a critical section. The Access Protections entry shows the lock and unlock
function that begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

3-60

 Data race through standard library function call

Correction — Use Reentrant Version of Standard Library Function

One possible correction is to use a reentrant version of the standard library function
strerror. You can use the POSIX version strerror_r which has the same
functionality but also guarantees thread-safety.

#include <errno.h>

#include <stdio.h>

#include <string.h>

void begin_critical_section(void);

void end_critical_section(void);

FILE *getFilePointer(void);

enum { BUFFERSIZE = 64 };

void func(FILE *fp) {

 fpos_t pos;

 errno = 0;

 if (0 != fgetpos(fp, &pos)) {

 char errmsg[BUFFERSIZE];

 if (strerror_r(errno, errmsg, BUFFERSIZE) != 0) {

 /* Handle error */

 }

 printf("Could not get the file position: %s\n", errmsg);

 }

}

void task1(void) {

 FILE* fptr1 = getFilePointer();

 func(fptr1);

}

void task2(void) {

 FILE* fptr2 = getFilePointer();

 func(fptr2);

}

void task3(void) {

 FILE* fptr3 = getFilePointer();

 begin_critical_section();

 func(fptr3);

 end_critical_section();

3-61

3 Checks

}

Correction — Place Function Call in Critical Section

One possible correction is to place the call to strerror in critical section. You can
implement the critical section in multiple ways.

For instance, you can place the call to the intermediate function func in the same critical
section in the three tasks. When task1 enters its critical section, the other tasks cannot
enter their critical sections until task1 leaves its critical section. The calls to func and
therefore the calls to strerror from the three tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call func between calls to
begin_critical_section and end_critical_section.

#include <errno.h>

#include <stdio.h>

#include <string.h>

void begin_critical_section(void);

void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {

 fpos_t pos;

 errno = 0;

 if (0 != fgetpos(fp, &pos)) {

 char *errmsg = strerror(errno);

 printf("Could not get the file position: %s\n", errmsg);

 }

}

void task1(void) {

 FILE* fptr1 = getFilePointer();

 begin_critical_section();

 func(fptr1);

 end_critical_section();

}

void task2(void) {

 FILE* fptr2 = getFilePointer();

 begin_critical_section();

3-62

 Data race through standard library function call

 func(fptr2);

 end_critical_section();

}

void task3(void) {

 FILE* fptr3 = getFilePointer();

 begin_critical_section();

 func(fptr3);

 end_critical_section();

}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value

Temporally exclusive
tasks on page 1-66

task1 task2 task3

On the command-line, you can use the following:

 polyspace-code-prover-nodesktop

 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2 task3

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: data_race_std_lib
Impact: High

3-63

3 Checks

See Also

Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry points (-entry-
points) | Critical section details (-critical-section-begin -critical-section-
end) | Temporally exclusive tasks (-temporal-exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Destruction of locked mutex |
Double lock | Double unlock | Missing lock | Missing unlock

More About
• “Set Up Multitasking Analysis Manually”

External Websites
• CWE-366: Race Condition within a Thread
• CERT C — CON33-C : Avoid race conditions when using library functions

Introduced in R2016b

3-64

http://cwe.mitre.org/data/definitions/366.html
https://www.securecoding.cert.org/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions

 Deadlock

Deadlock
Call sequence to lock functions cause two tasks to block each other

Description

Deadlock occurs when multiple tasks are stuck in their critical sections (CS) because:

• Each CS waits for another CS to end.
• The critical sections (CS) form a closed cycle. For example:

• CS #1 waits for CS #2 to end, and CS #2 waits for CS #1 to end.
• CS #1 waits for CS #2 to end, CS #2 waits for CS #3 to end and CS #3 waits for CS

#1 to end.

Polyspace expects critical sections of code to follow a specific format. A critical section lies
between a call to a lock function and a call to an unlock function. When a task my_task
calls a lock function my_lock, other tasks calling my_lock must wait until my_task
calls the corresponding unlock function. Both lock and unlock functions must have the
form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Deadlock with Two Tasks

void task1(void);

void task2(void);

int var;

void perform_task_cycle(void) {

 var++;

3-65

3 Checks

}

void begin_critical_section_1(void);

void end_critical_section_1(void);

void begin_critical_section_2(void);

void end_critical_section_2(void);

void task1() {

 while(1) {

 begin_critical_section_1();

 begin_critical_section_2();

 perform_task_cycle();

 end_critical_section_2();

 end_critical_section_1();

 }

}

void task2() {

 while(1) {

 begin_critical_section_2();

 begin_critical_section_1();

 perform_task_cycle();

 end_critical_section_1();

 end_critical_section_2();

 }

}

In this example, to emulate multitasking behavior, you must specify the following
options:

Option Specification

Configure
multitasking
manually
Entry points task1

task2

Starting procedure Ending procedure
begin_critical_section_1 end_critical_section_1

Critical section
details

begin_critical_section_2 end_critical_section_2

3-66

 Deadlock

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls begin_critical_section_1.
2 task2 calls begin_critical_section_2.
3 task1 reaches the instruction begin_critical_section_2();. Since task2

has already called begin_critical_section_2, task1 waits for task2 to call
end_critical_section_2.

4 task2 reaches the instruction begin_critical_section_1();. Since task1
has already called begin_critical_section_1, task2 waits for task1 to call
end_critical_section_1.

Correction-Follow Same Locking Sequence in Both Tasks

One possible correction is to follow the same sequence of calls to lock and unlock
functions in both task1 and task2.

void task1(void);

void task2(void);

void perform_task_cycle(void);

void begin_critical_section_1(void);

void end_critical_section_1(void);

void begin_critical_section_2(void);

void end_critical_section_2(void);

void task1() {

 while(1) {

 begin_critical_section_1();

 begin_critical_section_2();

 perform_task_cycle();

 end_critical_section_2();

 end_critical_section_1();

 }

}

void task2() {

 while(1) {

 begin_critical_section_1();

3-67

3 Checks

 begin_critical_section_2();

 perform_task_cycle();

 end_critical_section_2();

 end_critical_section_1();

 }

}

Deadlock with More Than Two Tasks

int var;

void performTaskCycle() {

 var++;

}

void lock1(void);

void lock2(void);

void lock3(void);

void unlock1(void);

void unlock2(void);

void unlock3(void);

void task1() {

 while(1) {

 lock1();

 lock2();

 performTaskCycle();

 unlock2();

 unlock1();

 }

}

void task2() {

 while(1) {

 lock2();

 lock3();

 performTaskCycle();

 unlock3();

 unlock2();

 }

3-68

 Deadlock

}

void task3() {

 while(1) {

 lock3();

 lock1();

 performTaskCycle();

 unlock1();

 unlock3();

 }

}

In this example, to emulate multitasking behavior, you must specify the following
options:

Option Specification

Configure multitasking
manually
Entry points task1

task2

task3

Starting procedure Ending procedure
lock1 unlock1

lock2 unlock2

Critical section details

lock3 unlock3

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls lock1.
2 task2 calls lock2.
3 task3 calls lock3.
4 task1 reaches the instruction lock2();. Since task2 has already called lock2,

task1 waits for call to unlock2.
5 task2 reaches the instruction lock3();. Since task3 has already called lock3,

task2 waits for call to unlock3.

3-69

3 Checks

6 task3 reaches the instruction lock1();. Since task1 has already called lock1,
task3 waits for call to unlock1.

Correction — Break Cyclic Order

To break the cyclic order between critical sections, note every lock function in your code
in a certain sequence, for example:

1 lock1

2 lock2

3 lock3

If you use more than one lock function in a task, use them in the order in which they
appear in the sequence. For example, you can use lock1 followed by lock2 but not
lock2 followed by lock1.

int var;

void performTaskCycle() {

 var++;

}

void lock1(void);

void lock2(void);

void lock3(void);

void unlock1(void);

void unlock2(void);

void unlock3(void);

void task1() {

 while(1) {

 lock1();

 lock2();

 performTaskCycle();

 unlock2();

 unlock1();

 }

}

void task2() {

3-70

 Deadlock

 while(1) {

 lock2();

 lock3();

 performTaskCycle();

 unlock3();

 unlock2();

 }

}

void task3() {

 while(1) {

 lock1();

 lock3();

 performTaskCycle();

 unlock3();

 unlock1();

 }

}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: deadlock
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry points (-entry-
points) | Critical section details (-critical-section-begin -critical-section-
end) | Temporally exclusive tasks (-temporal-exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through standard library
function call | Destruction of locked mutex | Double lock | Double unlock | Missing lock
| Missing unlock

More About
• “Set Up Multitasking Analysis Manually”

3-71

3 Checks

External Websites
• CWE-833: Deadlock
• CERT C — CON35-C: Avoid deadlock by locking in a predefined order
• CERT C — POS51-C: Avoid deadlock with POSIX threads by locking in predefined

order

Introduced in R2014b

3-72

https://cwe.mitre.org/data/definitions/833.html
https://www.securecoding.cert.org/confluence/display/c/CON35-C.+Avoid+deadlock+by+locking+in+a+predefined+order
https://www.securecoding.cert.org/confluence/display/c/POS51-C.+Avoid+deadlock+with+POSIX+threads+by+locking+in+predefined+order
https://www.securecoding.cert.org/confluence/display/c/POS51-C.+Avoid+deadlock+with+POSIX+threads+by+locking+in+predefined+order

 Dead code

Dead code
Code does not execute

Description
Dead code occurs when a block of code cannot be reached via any execution path. This
defect excludes:

• Code deactivated by constant false condition, which checks for directives
such as #if 0.

• Unreachable code, which checks for code after a control escape such as goto,
break, or return.

• Useless if, which checks for if statements that are always true.

Examples

Dead Code from if-Statement

#include <stdio.h>

int Return_From_Table(int ch){

 int table[5];

 /* Create a table */

 for(int i=0;i<=4;i++){

 table[i]=i^2+i+1;

 }

 if(table[ch]>100){ /* Defect: Condition always false */

 return 0;

 }

 return table[ch];

}

The maximum value in the array table is 4^2+4+1=21, so the test expression
table[ch]>100 always evaluates to false. The return 0 in the if statement is not
executed.

3-73

3 Checks

Correction — Remove Dead Code

One possible correction is to remove the if condition from the code.

#include <stdio.h>

int Return_From_Table(int ch){

 int table[5];

 /* Create a table */

 for(int i=0;i<=4;i++){

 table[i]=i^2+i+1;

 }

 return table[ch];

}

Dead Code for if with Enumerated Type

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void do_something(suit s);

void bridge(void)

{

 suit card = nextcard();

 if ((card < SPADES) || (card > CLUBS))

 card = UNKNOWN_SUIT;

 if (card > 7) {

 do_something(card);

 }

}

The type suit is enumerated with five options. However, the conditional expression
card > 7 always evaluates to false because card can be at most 5. The content in the
if statement is not executed.

Correction — Change Condition

One possible correction is to change the if-condition in the code. In this correction, the 7
is changed to HEART to relate directly to the type of card.

3-74

 Dead code

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void do_something(suit s);

void bridge(void)

{

 suit card = nextcard();

 if ((card < SPADES) || (card > CLUBS))

 card = UNKNOWN_SUIT;

 if (card > HEARTS) {

 do_something(card);

 }

}

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: dead_code
Impact: Low

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Code deactivated by constant false condition | Unreachable code |
Useless if

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-561: Dead Code

3-75

http://cwe.mitre.org/data/definitions/561.html

3 Checks

• CERT C — MSC01-C: Strive for logical completeness
• CERT C — MSC07-C: Detect and remove dead code
• CERT C — MSC12-C: Detect and remove code that has no effect or is never

executed

Introduced in R2013b

3-76

https://www.securecoding.cert.org/confluence/display/c/MSC01-C.+Strive+for+logical+completeness
https://www.securecoding.cert.org/confluence/display/c/MSC07-C.+Detect+and+remove+dead+code
https://www.securecoding.cert.org/confluence/display/c/MSC12-C.+Detect+and+remove+code+that+has+no+effect+or+is+never+executed
https://www.securecoding.cert.org/confluence/display/c/MSC12-C.+Detect+and+remove+code+that+has+no+effect+or+is+never+executed

 Deallocation of previously deallocated pointer

Deallocation of previously deallocated pointer
Memory freed more than once without allocation

Description

Deallocation of previously deallocated pointer occurs when a block of memory is
freed more than once using the free function without an intermediate allocation.

Examples

Deallocation of Previously Deallocated Pointer Error

#include <stdlib.h>

void allocate_and_free(void)

{

 int* pi = (int*)malloc(sizeof(int));

 if (pi == NULL) return;

 *pi = 2;

 free(pi);

 free (pi);

 /* Defect: pi has already been freed */

}

The first free statement releases the block of memory that pi refers to. The second
free statement on pi releases a block of memory that has been freed already.

Correction — Remove Duplicate Deallocation

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)

{

3-77

3 Checks

 int* pi = (int*)malloc(sizeof(int));

 if (pi == NULL) return;

 *pi = 2;

 free(pi);

 /* Fix: remove second deallocation */

 }

Check Information
Group: Dynamic memory
Language: C | C++
Default: On
Command-Line Syntax: double_deallocation
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Use of previously freed pointer

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-415: Double Free
• CERT C — MEM00-C: Allocate and free memory in the same module, at the same

level of abstraction
• CERT C — MEM30-C: Do not access freed memory

Introduced in R2013b

3-78

http://cwe.mitre.org/data/definitions/415.html
https://www.securecoding.cert.org/confluence/display/c/MEM00-C.+Allocate+and+free+memory+in+the+same+module%2C+at+the+same+level+of+abstraction
https://www.securecoding.cert.org/confluence/display/c/MEM00-C.+Allocate+and+free+memory+in+the+same+module%2C+at+the+same+level+of+abstraction
https://www.securecoding.cert.org/confluence/display/c/MEM30-C.+Do+not+access+freed+memory

 Declaration mismatch

Declaration mismatch
Mismatch between function or variable declarations

Description
Declaration mismatch occurs when a function or variable declaration does not match
other instances of the function or variable.

Examples

Inconsistent Declarations in Two Files

file1.c

int foo(void) {

 return 1;

}

file2.c

double foo(void);

int bar(void) {

 return (int)foo();

}

In this example, file1.c declares foo() as returning an integer. In file2.c, foo() is
declared as returning a double. This difference raises a defect on the second instance of
foo in file2.

Correction — Align the Function Return Values

One possible correction is to change the function declarations so that they match. In this
example, by changing the declaration of foo in file2.c to match file1.c, the defect is fixed.

file1.c

int foo(void) {

 return 1;

}

3-79

3 Checks

file2.c

int foo(void);

int bar(void) {

 return foo();

}

Inconsistent Structure Alignment

test1.c

#include "square.h"

#include "circle.h"

struct aCircle circle;

struct aSquare square;

int main(){

 square.side=1;

 circle.radius=1;

 return 0;

}

test2.c

#include "circle.h"

#include "square.h"

struct aCircle circle;

struct aSquare square;

int main(){

 square.side=1;

 circle.radius=1;

 return 0;

}

circle.h

#pragma pack(1)

extern struct aCircle{

 int radius;

} circle;

square.h

extern struct aSquare {

 unsigned int side:1;

} square;

In this example, a declaration mismatch defect is raised on square in square.h because
Polyspace infers that square.h does not have the same alignment as square in test2.c.
This error occurs because the #pragma pack(1) statement in circle.h declares specific
alignment. In test2.c, circle.h is included before square.h. Therefore, the #pragma
pack(1) statement from circle.h is not reset to the default alignment after the aCircle
structure. Because of this omission, test2.c infers that the aSquare square structure
also has an alignment of 1 byte.

Correction — Close Packing Statements

One possible correction is to reset the structure alignment after the aCircle struct
declaration. For the GNU or Microsoft Visual compilers, fix the defect by adding a
#pragma pack() statement at the end of circle.h.

3-80

 Declaration mismatch

test1.c

#include "square.h"

#include "circle.h"

struct aCircle circle;

struct aSquare square;

int main(){

 square.side=1;

 circle.radius=1;

 return 0;

}

test2.c

#include "circle.h"

#include "square.h"

struct aCircle circle;

struct aSquare square;

int main(){

 square.side=1;

 circle.radius=1;

 return 0;

}

circle.h

#pragma pack(1)

extern struct aCircle{

 int radius;

} circle;

#pragma pack()

square.h

extern struct aSquare {

 unsigned int side:1;

} square;

Other compilers require different #pragma pack syntax. For your syntax, see the
documentation for your compiler.

Correction — Use the Ignore pragma pack directives Option

One possible correction is to add the Ignore pragma pack directives option to your
Bug Finder analysis. If you want the structure alignment to change for each structure,
and you do not want to see this Declaration mismatch defect, use this correction.

1 On the Configuration pane, select the Advanced Settings pane.
2 In the Other box, enter -ignore-pragma-pack.
3 Rerun your analysis.

The Declaration mismatch defect is resolved.

Check Information
Group: Programming
Language: C | C++

3-81

3 Checks

Default: On
Command-Line Syntax: decl_mismatch
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers) | Ignore pragma pack directives (-ignore-pragma-pack)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-685: Function Call With Incorrect Number of Arguments
• CWE-686: Function Call With Incorrect Argument Type
• CERT C — DCL40-C: Do not create incompatible declarations of the same function

or object
• CERT C — EXP37-C: Call functions with the correct number and type of arguments

Introduced in R2013b

3-82

http://cwe.mitre.org/data/definitions/685.html
http://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/display/c/DCL40-C.+Do+not+create+incompatible+declarations+of+the+same+function+or+object
https://www.securecoding.cert.org/confluence/display/c/DCL40-C.+Do+not+create+incompatible+declarations+of+the+same+function+or+object
https://www.securecoding.cert.org/confluence/display/c/EXP37-C.+Call+functions+with+the+correct+number+and+type+of+arguments

 Delete of void pointer

Delete of void pointer
delete operates on a void* pointer pointing to an object

Description

Delete of void pointer occurs when the delete operator operates on a void* pointer.

Risk

Deleting a void* pointer is undefined according to the C++ Standard.

If the object is of type MyClass and the delete operator operates on a void* pointer
pointing to the object, the MyClass destructor is not called.

If the destructor contains cleanup operations such as release of resources or decreasing a
counter value, the operations do not take place.

Fix

Cast the void* pointer to the appropriate type. Perform the delete operation on the
result of the cast.

For instance, if the void* pointer points to a MyClass object, cast the pointer to
MyClass*.

Examples

Delete of void* Pointer

#include <iostream>

class MyClass {

public:

 explicit MyClass(int i):m_i(i) {}

 ~MyClass() {

 std::cout << "Delete MyClass(" << m_i << ")" << std::endl;

3-83

3 Checks

 }

private:

 int m_i;

};

void my_delete(void* ptr) {

 delete ptr;

}

int main() {

 MyClass* pt = new MyClass(0);

 my_delete(pt);

 return 0;

}

In this example, the function my_delete is designed to perform the delete operation
on any type. However, in the function body, the delete operation acts on a void*
pointer, ptr. Therefore, when you call my_delete with an argument of type MyClass,
the MyClass destructor is not called.

Correction — Cast void* Pointer to MyClass*

One possible solution is to use a function template instead of a function for my_delete.

#include <iostream>

class MyClass {

public:

 explicit MyClass(int i):m_i(i) {}

 ~MyClass() {

 std::cout << "Delete MyClass(" << m_i << ")" << std::endl;

 }

private:

 int m_i;

};

template<typename T> void safe_delete(T*& ptr) {

 delete ptr;

 ptr = NULL;

}

3-84

 Delete of void pointer

int main() {

 MyClass* pt = new MyClass(0);

 safe_delete(pt);

 return 0;

}

Result Information
Group: Good practice
Language: C++
Default: Off
Command-Line Syntax: delete_of_void_ptr
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2015b

3-85

3 Checks

Destination buffer overflow in string manipulation
Function writes to buffer at offset greater than buffer size

Description
Destination buffer overflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at an offset greater
than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char*
format), you use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of
characters written. For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf
or sprintf_s instead to enforce length control. Alternatively, use asprintf to
automatically allocate the memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string,
use vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s instead
to enforce length control.

Another possible solution is to increase the buffer size.

Examples

Buffer Overflow in sprintf Use

#include <stdio.h>

3-86

 Destination buffer overflow in string manipulation

void func(void) {

 char buffer[20];

 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);

}

In this example, buffer can contain 20 char elements but fmt_string has a greater
size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {

 char buffer[20];

 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);

}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: strlib_buffer_overflow
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Destination buffer underflow in string manipulation

More About
• “Navigate to Root Cause of Defect”

3-87

3 Checks

• “Review and Fix Results”

External Websites
• CWE–121: Stack-based Buffer Overflow
• CWE–125: Out-of-bounds Read
• CWE–251: Often Misused: String Management
• CWE–787: Out-of-bounds Write
• CERT C — ARR38-C: Guarantee that library functions do not form invalid pointers
• CERT C — STR07-C: Use the bounds-checking interface for string manipulation
• CERT C — STR08-C: Use managed strings for development of new string

manipulation code
• CERT C — STR31-C: Guarantee that storage for strings has sufficient space for

character data and null terminator
• CERT C — STR38-C: Do not confuse narrow and wide characters strings and

functions
• CERT C — ENV01-C: Do not make assumptions about the size of an environment

variable

Introduced in R2015b

3-88

http://cwe.mitre.org/data/definitions/121.html
http://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/251.html
http://cwe.mitre.org/data/definitions/787.html
https://www.securecoding.cert.org/confluence/display/c/ARR38-C.+Guarantee+that+library+functions+do+not+form+invalid+pointers
https://www.securecoding.cert.org/confluence/display/c/STR07-C.+Use+the+bounds-checking+interfaces+for+string+manipulation
https://www.securecoding.cert.org/confluence/display/c/STR08-C.+Use+managed+strings+for+development+of+new+string+manipulation+code
https://www.securecoding.cert.org/confluence/display/c/STR08-C.+Use+managed+strings+for+development+of+new+string+manipulation+code
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/c/STR38-C.+Do+not+confuse+narrow+and+wide+character+strings+and+functions
https://www.securecoding.cert.org/confluence/display/c/STR38-C.+Do+not+confuse+narrow+and+wide+character+strings+and+functions
https://www.securecoding.cert.org/confluence/display/c/ENV01-C.+Do+not+make+assumptions+about+the+size+of+an+environment+variable
https://www.securecoding.cert.org/confluence/display/c/ENV01-C.+Do+not+make+assumptions+about+the+size+of+an+environment+variable

 Destination buffer underflow in string manipulation

Destination buffer underflow in string manipulation
Function writes to buffer at a negative offset from beginning of buffer

Description

Destination buffer underflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at a negative offset
from the beginning of the buffer.

For instance, for the function sprintf(char* buffer, const char* format),
you obtain the buffer from an operation buffer = (char*)arr; ... buffer +=
offset;. arr is an array and offset is a negative value.

Risk

Buffer underflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer underflow also introduces the risk of code injection.

Fix

If the destination buffer argument results from pointer arithmetic, see if you are
decrementing a pointer. Fix the pointer decrement by modifying either the original value
before decrement or the decrement value.

Examples

Buffer Underflow in sprintf Use

#include <stdio.h>

#define offset -2

void func(void) {

 char buffer[20];

 char *fmt_string ="Text";

3-89

3 Checks

 sprintf(&buffer[offset], fmt_string);

}

In this example, &buffer[offset] is at a negative offset from the memory allocated to
buffer.

Correction — Change Pointer Decrementer

One possible correction is to change the value of offset.

#include <stdio.h>

#define offset 2

void func(void) {

 char buffer[20];

 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);

}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: strlib_buffer_underflow
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Destination buffer overflow in string manipulation

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

3-90

 Destination buffer underflow in string manipulation

External Websites
• CWE–124: Buffer Underwrite ('Buffer Underflow')
• CWE–786: Access of Memory Location Before Start of Buffer
• CWE–787: Out-of-bounds Write
• CERT C — ARR38-C: Guarantee that library functions do not form invalid pointers

Introduced in R2015b

3-91

http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/786.html
http://cwe.mitre.org/data/definitions/787.html
https://www.securecoding.cert.org/confluence/display/c/ARR38-C.+Guarantee+that+library+functions+do+not+form+invalid+pointers

3 Checks

Destruction of locked mutex
Task tries to destroy a mutex in the locked state

Description
Destruction of locked mutex occurs when a task destroys a mutex after it is locked
(and before it is unlocked). The locking and destruction can happen in the same task or
different tasks.

Risk

A mutex is locked to protect shared variables from concurrent access. If a mutex is
destroyed in the locked state, the protection does not apply.

Fix

To fix this defect, destroy the mutex only after you unlock it. It is a good design practice
to:

• Initialize a mutex before creating the threads where you use the mutex.
• Destroy a mutex after joining the threads that you created.

On the Result Details pane, you see two events, the locking and destruction of the
mutex, and the tasks that initiated the events. To navigate to the corresponding line in
your source code, click the event.

Examples

Locking and Destruction in Different Tasks

#include <pthread.h>

pthread_mutex_t lock1;

pthread_mutex_t lock2;

pthread_mutex_t lock3;

3-92

 Destruction of locked mutex

void t0 (void) {

 pthread_mutex_lock (&lock1);

 pthread_mutex_lock (&lock2);

 pthread_mutex_lock (&lock3);

 pthread_mutex_unlock (&lock2);

 pthread_mutex_unlock (&lock1);

 pthread_mutex_unlock (&lock3);

}

void t1 (void) {

 pthread_mutex_lock (&lock1);

 pthread_mutex_lock (&lock2);

 pthread_mutex_destroy (&lock3);

 pthread_mutex_unlock (&lock2);

 pthread_mutex_unlock (&lock1);

}

In this example, after task t0 locks the mutex lock3, task t1 can destroy it. The
destruction occurs if the following events happen in sequence:

1 t0 acquires lock3.
2 t0 releases lock2.
3 t0 releases lock1.
4 t1 acquires the lock lock1 released by t0.
5 t1 acquires the lock lock2 released by t0.
6 t1 destroys lock3.

For simplicity, this example uses a mix of automatic and manual concurrency detection.
The tasks t0 and t1 are manually specified as entry points by using the option Entry
points (-entry-points). The critical sections are implemented through primitives
pthread_mutex_lock and pthread_mutex_unlock that the software detects
automatically. In practice, for entry point specification (thread creation), you will use
primitives such as pthread_create. The next example shows how the defect can appear
when you use pthread_create.

Correction — Place Lock-Unlock Pair Together in Same Critical Section as Destruction

The locking and destruction of lock3 occurs inside the critical section imposed by lock1
and lock2, but the unlocking occurs outside. One possible correction is to place the lock-

3-93

3 Checks

unlock pair in the same critical section as the destruction of the mutex. Use one of these
critical sections:

• Critical section imposed by lock1 alone.
• Critical section imposed by lock1 and lock2.

In this corrected code, the lock-unlock pair and the destruction is placed in the critical
section imposed by lock1 and lock2. When t0 acquires lock1 and lock2, t1 has
to wait for their release before it executes the instruction pthread_mutex_destroy
(&lock3);. Therefore, t1 cannot destroy mutex lock3 in the locked state.

#include <pthread.h>

pthread_mutex_t lock1;

pthread_mutex_t lock2;

pthread_mutex_t lock3;

void t0 (void) {

 pthread_mutex_lock (&lock1);

 pthread_mutex_lock (&lock2);

 pthread_mutex_lock (&lock3);

 pthread_mutex_unlock (&lock3);

 pthread_mutex_unlock (&lock2);

 pthread_mutex_unlock (&lock1);

}

void t1 (void) {

 pthread_mutex_lock (&lock1);

 pthread_mutex_lock (&lock2);

 pthread_mutex_destroy (&lock3);

 pthread_mutex_unlock (&lock2);

 pthread_mutex_unlock (&lock1);

}

3-94

 Destruction of locked mutex

Locking and Destruction in Start Routine of Thread

#include <pthread.h>

/* Define globally accessible variables and a mutex */

#define NUMTHREADS 4

pthread_t callThd[NUMTHREADS];

pthread_mutex_t lock;

void atomic_operation(void);

void *do_create(void *arg) {

 /* Creation thread */

 pthread_mutex_init(&lock, NULL);

 pthread_exit((void*) 0);

}

void *do_work(void *arg) {

 /* Worker thread */

 pthread_mutex_lock (&lock);

 atomic_operation();

 pthread_mutex_unlock (&lock);

 pthread_exit((void*) 0);

}

void *do_destroy(void *arg) {

 /* Destruction thread */

 pthread_mutex_destroy(&lock);

 pthread_exit((void*) 0);

}

int main (int argc, char *argv[]) {

 int i;

 void *status;

 pthread_attr_t attr;

 /* Create threads */

 pthread_attr_init(&attr);

 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Thread that initializes mutex */

 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use mutex for atomic operation*/

3-95

3 Checks

 for(i=0; i<NUMTHREADS-1; i++) {

 pthread_create(&callThd[i], &attr, do_work, (void *)i);

 }

 /* Thread that destroys mutex */

 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */

 for(i=0; i<NUMTHREADS; i++) {

 pthread_join(callThd[i], &status);

 }

 pthread_exit(NULL);

}

In this example, four threads are created. The threads are assigned different actions.

• The first thread callThd[0] initializes the mutex lock.
• The second and third threads, callThd[1] and callThd[2], perform an atomic

operation protected by the mutex lock.
• The fourth thread callThd[3] destroys the mutex lock.

The threads can interrupt each other. Therefore, immediately after the second or third
thread locks the mutex, the fourth thread can destroy it.

Correction — Initialize and Destroy Mutex Outside Start Routine

One possible correction is to initialize and destroy the mutex in the main function outside
the start routine of the threads. The threads perform only the atomic operation. You
need two fewer threads because the mutex initialization and destruction threads are not
required.

#include <pthread.h>

/* Define globally accessible variables and a mutex */

#define NUMTHREADS 2

pthread_t callThd[NUMTHREADS];

pthread_mutex_t lock;

void atomic_operation(void);

void *do_work(void *arg) {

 pthread_mutex_lock (&lock);

3-96

 Destruction of locked mutex

 atomic_operation();

 pthread_mutex_unlock (&lock);

 pthread_exit((void*) 0);

}

int main (int argc, char *argv[]) {

 int i;

 void *status;

 pthread_attr_t attr;

 /* Create threads */

 pthread_attr_init(&attr);

 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize mutex */

 pthread_mutex_init(&lock, NULL);

 for(i=0; i<NUMTHREADS; i++) {

 pthread_create(&callThd[i], &attr, do_work, (void *)i);

 }

 pthread_attr_destroy(&attr);

 /* Join threads */

 for(i=0; i<NUMTHREADS; i++) {

 pthread_join(callThd[i], &status);

 }

 /* Destroy mutex */

 pthread_mutex_destroy(&lock);

 pthread_exit(NULL);

}

Correction — Use A Second Mutex To Protect Lock-Unlock Pair and Destruction

Another possible correction is to use a second mutex and protect the lock-unlock
pair from the destruction. This corrected code uses the mutex lock2 to achieve this
protection. The second mutex is initialized in the main function outside the start routine
of the threads.

#include <pthread.h>

3-97

3 Checks

/* Define globally accessible variables and a mutex */

#define NUMTHREADS 4

pthread_t callThd[NUMTHREADS];

pthread_mutex_t lock;

pthread_mutex_t lock2;

void atomic_operation(void);

void *do_create(void *arg) {

 /* Creation thread */

 pthread_mutex_init(&lock, NULL);

 pthread_exit((void*) 0);

}

void *do_work(void *arg) {

 /* Worker thread */

 pthread_mutex_lock (&lock2);

 pthread_mutex_lock (&lock);

 atomic_operation();

 pthread_mutex_unlock (&lock);

 pthread_mutex_unlock (&lock2);

 pthread_exit((void*) 0);

}

void *do_destroy(void *arg) {

 /* Destruction thread */

 pthread_mutex_lock (&lock2);

 pthread_mutex_destroy(&lock);

 pthread_mutex_unlock (&lock2);

 pthread_exit((void*) 0);

}

int main (int argc, char *argv[]) {

 int i;

 void *status;

 pthread_attr_t attr;

 /* Create threads */

 pthread_attr_init(&attr);

 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize second mutex */

 pthread_mutex_init(&lock2, NULL);

3-98

 Destruction of locked mutex

 /* Thread that initializes first mutex */

 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use first mutex for atomic operation */

 /* The threads use second mutex to protect first from destruction in locked state*/

 for(i=0; i<NUMTHREADS-1; i++) {

 pthread_create(&callThd[i], &attr, do_work, (void *)i);

 }

 /* Thread that destroys first mutex */

 /* The thread uses the second mutex to prevent destruction of locked mutex */

 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */

 for(i=0; i<NUMTHREADS; i++) {

 pthread_join(callThd[i], &status);

 }

 /* Destroy second mutex */

 pthread_mutex_destroy(&lock2);

 pthread_exit(NULL);

}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: destroy_locked
Impact: Medium

See Also

Polyspace Analysis Options
Find defects (-checkers) | Target processor type (-target) | Configure multitasking
manually | Entry points (-entry-points)

3-99

3 Checks

Polyspace Results
Data race including atomic operations | Data race | Data race through standard library
function call | Deadlock | Double lock | Double unlock | Missing lock | Missing unlock

More About
• “Set Up Multitasking Analysis Manually”

External Websites
• CWE-667: Improper Locking
• CWE-826: Premature release of resource during expected lifetime
• CERT C — CON31-C: Do not destroy a mutex while it is locked

Introduced in R2016b

3-100

https://cwe.mitre.org/data/definitions/667.html
http://cwe.mitre.org/data/definitions/826.html
https://www.securecoding.cert.org/confluence/display/c/CON31-C.+Do+not+destroy+a+mutex+while+it+is+locked

 Double lock

Double lock

Lock function is called twice in a task without an intermediate call to unlock function

Description

Double lock occurs when:

• A task calls a lock function my_lock.
• The task calls my_lock again before calling the corresponding unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task task1 calls a lock function lock, other tasks calling lock
must wait until task calls the corresponding unlock function. Polyspace requires that
both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Double Lock

int global_var;

void lock(void);

void unlock(void);

void task1(void)

{

 lock();

 global_var += 1;

 lock();

 global_var += 1;

3-101

3 Checks

 unlock();

}

void task2(void)

{

 lock();

 global_var += 1;

 unlock();

}

In this example, to emulate multitasking behavior, you must specify the following
options:

Option Value

Configure multitasking
manually on page 1-56
Entry points on page 1-57 task1

task2

Starting procedure Ending procedureCritical section details on
page 1-64 lock unlock

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop

 -entry-points task1,task2

 -critical-section-begin lock:cs1

 -critical-section-end unlock:cs1

task1 enters a critical section through the call lock();. task1 calls lock again before
it leaves the critical section through the call unlock();.

Correction — Remove First Lock

If you want the first global_var+=1; to be outside the critical section, one possible
correction is to remove the first call to lock. However, if other tasks are using
global_var, this code can produce a Data race error.

3-102

 Double lock

int global_var;

void lock(void);

void unlock(void);

void task1(void)

{

 global_var += 1;

 lock();

 global_var += 1;

 unlock();

}

void task2(void)

{

 lock();

 global_var += 1;

 unlock();

}

Correction — Remove Second Lock

If you want the first global_var+=1; to be inside the critical section, one possible
correction is to remove the second call to lock.

int global_var;

void lock(void);

void unlock(void);

void task1(void)

{

 lock();

 global_var += 1;

 global_var += 1;

 unlock();

}

void task2(void)

{

3-103

3 Checks

 lock();

 global_var += 1;

 unlock();

}

Correction — Add Another Unlock

If you want the second global_var+=1; to be inside a critical section, another possible
correction is to add another call to unlock.

int global_var;

void lock(void);

void unlock(void);

void task1(void)

{

 lock();

 global_var += 1;

 unlock();

 lock();

 global_var += 1;

 unlock();

}

void task2(void)

{

 lock();

 global_var += 1;

 unlock();

}

Double Lock with Function Call

int global_var;

void lock(void);

3-104

 Double lock

void unlock(void);

void performOperation(void) {

 lock();

 global_var++;

}

void task1(void)

{

 lock();

 global_var += 1;

 performOperation();

 unlock();

}

void task2(void)

{

 lock();

 global_var += 1;

 unlock();

}

In this example, to emulate multitasking behavior, you must specify the following
options:

Option Specification

Configure multitasking
manually on page 1-56
Entry points on page 1-57 task1

task2

Starting procedure Ending procedureCritical section details on
page 1-64 lock unlock

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop

 -entry-points task1,task2

 -critical-section-begin lock:cs1

 -critical-section-end unlock:cs1

3-105

3 Checks

task1 enters a critical section through the call lock();. task1 calls the function
performOperation. In performOperation, lock is called again even though task1
has not left the critical section through the call unlock();.

Correction — Remove Second Lock

One possible correction is to remove the call to lock in task1.

int global_var;

void lock(void);

void unlock(void);

void performOperation(void) {

 global_var++;

}

void task1(void)

{

 lock();

 global_var += 1;

 performOperation();

 unlock();

}

void task2(void)

{

 lock();

 global_var += 1;

 unlock();

}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: double_lock
Impact: High

3-106

 Double lock

See Also

Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry points (-entry-
points) | Critical section details (-critical-section-begin -critical-section-
end) | Temporally exclusive tasks (-temporal-exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through standard library
function call | Deadlock | Destruction of locked mutex | Double unlock | Missing lock |
Missing unlock

More About
• “Set Up Multitasking Analysis Manually”

External Websites
• CWE-764: Multiple Locks of a Critical Resource

Introduced in R2014b

3-107

https://cwe.mitre.org/data/definitions/764.html

3 Checks

Double unlock
Unlock function is called twice in a task without an intermediate call to lock function

Description

Double unlock occurs when:

• A task calls a lock function my_lock.
• The task calls the corresponding unlock function my_unlock.
• The task calls my_unlock again. The task does not call my_lock a second time

between the two calls to my_unlock.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task task1 calls a lock function my_lock, other tasks calling
my_lock must wait until task1 calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Double Unlock

int global_var;

void BEGIN_CRITICAL_SECTION(void);

void END_CRITICAL_SECTION(void);

void task1(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

3-108

 Double unlock

 END_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

}

void task2(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

}

In this example, to emulate multitasking behavior, you must specify the following
options:

Option Value

Configure multitasking
manually on page 1-56
Entry points on page 1-57 task1

task2

Starting procedure Ending procedureCritical section details on
page 1-64 BEGIN_CRITICAL_SECTION END_CRITICAL_SECTION

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop

 -entry-points task1,task2

 -critical-section-begin BEGIN_CRITICAL_SECTION:cs1

 -critical-section-end END_CRITICAL_SECTION:cs1

task1 enters a critical section through the call BEGIN_CRITICAL_SECTION();.
task1 leaves the critical section through the call END_CRITICAL_SECTION();.
task1 calls END_CRITICAL_SECTION again without an intermediate call to
BEGIN_CRITICAL_SECTION.

Correction — Remove Second Unlock

If you want the second global_var+=1; to be outside the critical section, one possible
correction is to remove the second call to END_CRITICAL_SECTION. However, if other
tasks are using global_var, this code can produce a Data race error.

3-109

3 Checks

int global_var;

void BEGIN_CRITICAL_SECTION(void);

void END_CRITICAL_SECTION(void);

void task1(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

 global_var += 1;

}

void task2(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

}

Correction — Remove First Unlock

If you want the second global_var+=1; to be inside the critical section, one possible
correction is to remove the first call to END_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);

void END_CRITICAL_SECTION(void);

void task1(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 global_var += 1;

 END_CRITICAL_SECTION();

}

void task2(void)

3-110

 Double unlock

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

}

Correction — Add Another Lock

If you want the second global_var+=1; to be inside a critical section, another possible
correction is to add another call to BEGIN_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);

void END_CRITICAL_SECTION(void);

void task1(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

}

void task2(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: double_unlock
Impact: High

3-111

3 Checks

See Also

Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry points (-entry-
points) | Critical section details (-critical-section-begin -critical-section-
end) | Temporally exclusive tasks (-temporal-exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through standard library
function call | Deadlock | Destruction of locked mutex | Double lock | Missing lock |
Missing unlock

More About
• “Set Up Multitasking Analysis Manually”

External Websites
• CWE-765: Multiple Unlocks of a Critical Resource

Introduced in R2014b

3-112

https://cwe.mitre.org/data/definitions/765.html

 Exception caught by value

Exception caught by value
catch statement accepts an object by value

Description
Exception caught by value occurs when a catch statement accepts an object by value.

Risk

If a throw statement passes an object and the corresponding catch statement accepts
the exception by value, the object is copied to the catch statement parameter. This copy
can lead to unexpected behavior such as:

• Object slicing, if the throw statement passes a derived class object.
• Undefined behavior of the exception, if the copy fails.

Fix

Catch the exception by reference or by pointer. Catching an exception by reference is
recommended.

Examples

Standard Exception Caught by Value

#include <exception>

extern void print_str(const char* p);

extern void throw_exception();

void func() {

 try {

 throw_exception();

 }

 catch(std::exception exc) {

 print_str(exc.what());

3-113

3 Checks

 }

}

In this example, the catch statement takes a std::exception object by value.
Catching an exception by value causes copying of the object. It can cause undefined
behavior of the exception if the copy fails.

Correction: Catch Exception by Reference

One possible solution is to catch the exception by reference.

#include <exception>

extern void print_str(const char* p);

extern void throw_exception();

void corrected_excpcaughtbyvalue() {

 try {

 throw_exception();

 }

 catch(std::exception& exc) {

 print_str(exc.what());

 }

}

Derived Class Exception Caught by Value

#include <exception>

#include <string>

#include <typeinfo>

#include <iostream>

// Class declarations

class BaseExc {

public:

 explicit BaseExc();

 virtual ~BaseExc() {};

protected:

 BaseExc(const std::string& type);

private:

 std::string _id;

};

class IOExc: public BaseExc {

3-114

 Exception caught by value

public:

 explicit IOExc();

};

//Class method declarations

BaseExc::BaseExc():_id(typeid(this).name()) {

}

BaseExc::BaseExc(const std::string& type): _id(type) {

}

IOExc::IOExc(): BaseExc(typeid(this).name()) {

}

int input(void);

int main(void) {

 int rnd = input();

 try {

 if (rnd==0) {

 throw IOExc();

 } else {

 throw BaseExc();

 }

 }

 catch(BaseExc exc) {

 std::cout << "Intercept BaseExc" << std::endl;

 }

 return 0;

}

In this example, the catch statement takes a BaseExc object by value. Catching
exceptions by value causes copying of the object. The copying can cause:

• Undefined behavior of the exception if it fails.
• Object slicing if an exception of the derived class IOExc is caught.

Correction — Catch Exceptions by Reference

One possible correction is to catch exceptions by reference.

#include <exception>

#include <string>

#include <typeinfo>

#include <iostream>

3-115

3 Checks

// Class declarations

class BaseExc {

public:

 explicit BaseExc();

 virtual ~BaseExc() {};

protected:

 BaseExc(const std::string& type);

private:

 std::string _id;

};

class IOExc: public BaseExc {

public:

 explicit IOExc();

};

//Class method declarations

BaseExc::BaseExc():_id(typeid(this).name()) {

}

BaseExc::BaseExc(const std::string& type): _id(type) {

}

IOExc::IOExc(): BaseExc(typeid(this).name()) {

}

int input(void);

int main(void) {

 int rnd = input();

 try {

 if (rnd==0) {

 throw IOExc();

 } else {

 throw BaseExc();

 }

 }

 catch(BaseExc& exc) {

 std::cout << "Intercept BaseExc" << std::endl;

 }

 return 0;

}

3-116

 Exception caught by value

Result Information
Group: Programming
Language: C++
Default: On
Command-Line Syntax: excp_caught_by_value
Impact: Medium

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2015b

3-117

3 Checks

Exception handler hidden by previous handler
catch statement is not reached because of an earlier catch statement for the same
exception

Description

Exception handler hidden by previous handler occurs when a catch statement is
not reached because a previous catch statement handles the exception.

For instance, a catch statement accepts an object of a class my_exception and a later
catch statement accepts one of the following:

• An object of the my_exception class.
• An object of a class derived from the my_exception class.

Risk

Because the catch statement is not reached, it is effectively dead code.

Fix

One possible fix is to remove the redundant catch statement.

Another possible fix is to reverse the order of catch statements. Place the catch
statement that accepts the derived class exception before the catch statement that
accepts the base class exception.

Examples

catch Statement Hidden by Previous Statement

#include <new>

extern void print_str(const char* p);

extern void throw_exception();

3-118

 Exception handler hidden by previous handler

void func() {

 try {

 throw_exception();

 }

 catch(std::exception& exc) {

 print_str(exc.what());

 }

 catch(std::bad_alloc& exc) {

 print_str(exc.what());

 }

}

In this example, the second catch statement accepts a std::bad_alloc object. Because
the std::bad_alloc class is derived from a std::exception class, the second catch
statement is hidden by the previous catch statement that accepts a std::exception
object.

The defect appears on the parameter type of the catch statement. To find which catch
statement hides the current catch statement:

1 On the Source pane, right-click the keyword catch and select Search For
"catch"in Current Source File.

2 On the Search pane, click each search result, proceeding backwards from the
current catch statement. Continue until you find the catch statement that hides
the catch statement with the defect.

Correction — Reorder catch Statement

One possible correction is to place the catch statement with the derived class parameter
first.

#include <new>

extern void print_str(const char* p);

extern void throw_exception();

void corrected_excphandlerhidden() {

 try {

 throw_exception();

 }

3-119

3 Checks

 catch(std::bad_alloc& exc) {

 print_str(exc.what());

 }

 catch(std::exception& exc) {

 print_str(exc.what());

 }

}

Result Information
Group: Programming
Language: C++
Default: On
Command-Line Syntax: excp_handler_hidden
Impact: Medium

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-755: Improper Handling of Exceptional Conditions

Introduced in R2015b

3-120

http://cwe.mitre.org/data/definitions/755.html

 Float overflow

Float overflow
Overflow from operation between floating points

Description

Float overflow occurs when an operation on floating point variables exceeds the space
available to represent the resulting value.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Examples

Multiplication of Floats

#include <float.h>

float square(void) {

 float val = FLT_MAX;

 return val * val;

}

In the return statement, the variable val is multiplied by itself. The square of the
maximum float value cannot be represented by a float (the return type for this function)
because the value of val is the maximum float value.

Correction — Different Storage Type

One possible correction is to store the result of the operation in a larger data type. In this
example, by returning a double instead of a float, the overflow defect is fixed.

#include <float.h>

double square(void) {

 float val = FLT_MAX;

 return (double)val * (double)val;

3-121

3 Checks

}

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: float_ovfl
Impact: Low

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer overflow | Unsigned integer overflow

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-682: Incorrect Calculation
• CWE-873: CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP)
• CERT C — FLP03-C: Detect and handle floating-point errors
• CERT C — FLP06-C: Convert integers to floating point for floating-point operations

Introduced in R2013b

3-122

http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/display/c/FLP03-C.+Detect+and+handle+floating-point+errors
https://www.securecoding.cert.org/confluence/display/c/FLP06-C.+Convert+integers+to+floating+point+for+floating-point+operations

 Float conversion overflow

Float conversion overflow

Overflow when converting between floating point data types

Description

Float conversion overflow occurs when converting a floating point number to a
smaller floating point data type. If the variable does not have enough memory to
represent the original number, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Examples

Converting from double to float

float convert(void) {

 double diam = 1e100;

 return (float)diam;

}

In the return statement, the variable diam of type double (64 bits) is converted to a
variable of type float (32 bits). However, the value 1^100 requires more than 32 bits to be
precisely represented.

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: float_conv_ovfl
Impact: High

3-123

3 Checks

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer conversion overflow | Unsigned integer conversion overflow | Sign change
integer conversion overflow

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-197: Numeric Truncation Error
• CWE-681: Incorrect Conversion between Numeric Types
• CERT C — FLP03-C: Detect and handle floating-point errors
• CERT C — FLP34-C: Ensure that floating-point conversions are within range of the

new type

Introduced in R2013b

3-124

http://cwe.mitre.org/data/definitions/197.html
http://cwe.mitre.org/data/definitions/681.html
https://www.securecoding.cert.org/confluence/display/c/FLP03-C.+Detect+and+handle+floating-point+errors
https://www.securecoding.cert.org/confluence/display/c/FLP34-C.+Ensure+that+floating-point+conversions+are+within+range+of+the+new+type
https://www.securecoding.cert.org/confluence/display/c/FLP34-C.+Ensure+that+floating-point+conversions+are+within+range+of+the+new+type

 Float division by zero

Float division by zero

Dividing floating point number by zero

Description

Float division by zero occurs when the denominator of a division operation is a zero
and a floating point number.

Examples

Dividing a Floating Point Number by Zero

float fraction(float num)

{

 float denom = 0.0;

 float result = 0.0;

 result = num/denom;

 return result;

}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

float fraction(float num)

{

 float denom = 0.0;

 float result = 0.0;

 if(((int)denom) != 0)

 result = num/denom;

 return result;

}

3-125

3 Checks

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

float fraction(float num)

{

 float denom = 2.0;

 float result = 0.0;

 result = num/denom;

 return result;

}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: float_zero_div
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer division by zero

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-369: Divide By Zero

3-126

http://cwe.mitre.org/data/definitions/369.html

 Float division by zero

• CERT C — FLP03-C: Detect and handle floating-point errors

Introduced in R2013b

3-127

https://www.securecoding.cert.org/confluence/display/c/FLP03-C.+Detect+and+handle+floating-point+errors

3 Checks

Format string specifiers and arguments mismatch
String specifiers do not match corresponding arguments

Description

Format string specifiers and arguments mismatch occurs when the parameters in
the format specification do not match their corresponding arguments. For example, an
argument of type unsigned long must have a format specification of %lu.

Examples

Printing a Float

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", fst);

}

In the printf statement, the format specifier, %d, does not match the data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the
unsigned integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);

}

3-128

 Format string specifiers and arguments mismatch

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert
fst to an integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", (int)fst);

}

Check Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: string_format
Impact: Low

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library string routine

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• Standard library output functions
• CWE-685: Function Call With Incorrect Number of Arguments
• CWE-686: Function Call With Incorrect Argument Type

3-129

http://en.cppreference.com/w/cpp/io/c/fprintf
http://cwe.mitre.org/data/definitions/685.html
http://cwe.mitre.org/data/definitions/686.html

3 Checks

• CERT C — DCL11-C: Understand the type issues associated with variadic functions
• CERT C — EXP37-C: Call functions with the correct number and type of arguments

Introduced in R2013b

3-130

https://www.securecoding.cert.org/confluence/display/c/DCL11-C.+Understand+the+type+issues+associated+with+variadic+functions
https://www.securecoding.cert.org/confluence/display/c/EXP37-C.+Call+functions+with+the+correct+number+and+type+of+arguments

 Hard-coded buffer size

Hard-coded buffer size
Size of memory buffer is a numerical value instead of symbolic constant

Description

Hard-coded buffer size occurs when you use a numerical value instead of a symbolic
constant when declaring a memory buffer such as an array.

Risk

Hard-coded buffer size causes the following issues:

• Hard-coded buffer size increases the likelihood of mistakes and therefore maintenance
costs. If a policy change requires developers to change the buffer size, they must
change every occurrence of the buffer size in the code.

• Hard-constant constants can be exposed to attack if the code is disclosed.

Fix

Use a symbolic name instead of a hard-coded constant for buffer size. Symbolic names
include const-qualified variables, enum constants, or macros.

enum constants are recommended.

• Macros are replaced by their constant values after preprocessing. Therefore, they can
expose the loop boundary.

• enum constants are known at compilation time. Therefore, compilers can optimize the
loops more efficiently.

const-qualified variables are usually known at run time.

Examples

Hard-Coded Buffer Size

int table[100];

3-131

3 Checks

void read(int);

void func(void) {

 for (int i=0; i<100; i++)

 read(table[i]);

}

In this example, the size of the array table is hard-coded.

Correction — Use Symbolic Name

One possible correction is to replace the hard-coded size with a symbolic name.

const int MAX_1 = 100;

#define MAX_2 100

enum { MAX_3 = 100 };

int table_1[MAX_1];

int table_2[MAX_2];

int table_3[MAX_3];

void read(int);

void func(void) {

 for (int i=0; i < MAX_1; i++)

 read(table_1[i]);

 for (int i=0; i < MAX_2; i++)

 read(table_2[i]);

 for (int i=0; i < MAX_3; i++)

 read(table_3[i]);

}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: hard_coded_buffer_size
Impact: Low

See Also
Find defects (-checkers)

3-132

 Hard-coded buffer size

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE–547: Use of Hard-coded, Security-relevant Constants
• CERT C — DCL06-C: Use meaningful symbolic constants to represent literal values

Introduced in R2015b

3-133

http://cwe.mitre.org/data/definitions/547.html
https://www.securecoding.cert.org/confluence/display/c/DCL06-C.+Use+meaningful+symbolic+constants+to+represent+literal+values

3 Checks

Hard-coded loop boundary
Loop boundary is a numerical value instead of symbolic constant

Description

Hard-coded loop boundary occurs when you use a numerical value instead of symbolic
constant for the boundary of a for, while or do-while loop.

Risk

Hard-coded loop boundary causes the following issues:

• Hard-coded loop boundary makes the code vulnerable to denial of service attacks
when the loop involves time-consuming computation or resource allocation.

• Hard-coded loop boundary increases the likelihood of mistakes and maintenance
costs. If a policy change requires developers to change the loop boundary, they must
change every occurrence of the boundary in the code.

For instance, the loop boundary is 10000 and represents the maximum number of
client connections supported in a network server application. If the server supports
more clients, you must change all instances of the loop boundary in your code. Even if
the loop boundary occurs once, you have to search for a numerical value of 10000 in
your code. The numerical value can occur in places other than the loop boundary. You
must browse through those places before you find the loop boundary.

Fix

Use a symbolic name instead of a hard-coded constant for loop boundary. Symbolic
names include const-qualified variables, enum constants or macros.enum constants are
recommended because:

• Macros are replaced by their constant values after preprocessing. Therefore, they can
expose the buffer size.

• enum constants are known at compilation time. Therefore, compilers can allocate
storage for them more efficiently.

const-qualified variables are usually known at run time.

3-134

 Hard-coded loop boundary

Examples

Hard-Coded Loop Boundary

void performOperation(int);

void func(void) {

 for (int i=0; i<100; i++)

 performOperation(i);

}

In this example, the boundary of the for loop is hard-coded.

Correction — Use Symbolic Name

One possible correction is to replace the hard-coded loop boundary with a symbolic name.

const int MAX_1 = 100;

#define MAX_2 100

enum { MAX_3 = 100 };

void performOperation_1(int);

void performOperation_2(int);

void performOperation_3(int);

void func(void) {

 for (int i=0; i<MAX_1; i++)

 performOperation_1(i);

 for (int i=0; i<MAX_2; i++)

 performOperation_2(i);

 for (int i=0; i<MAX_3; i++)

 performOperation_3(i);

}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: hard_coded_loop_boundary
Impact: Low

3-135

3 Checks

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE–547: Use of Hard-coded, Security-relevant Constants
• CERT C — DCL06-C: Use meaningful symbolic constants to represent literal values

Introduced in R2015b

3-136

http://cwe.mitre.org/data/definitions/547.html
https://www.securecoding.cert.org/confluence/display/c/DCL06-C.+Use+meaningful+symbolic+constants+to+represent+literal+values

 Improper array initialization

Improper array initialization

Incorrect array initialization when using initializers

Description

Improper array initialization occurs when Polyspace Bug Finder considers that an
array initialization using initializers is incorrect.

This defect applies to normal and designated initializers. In C99, with designated
initializers, you can place the elements of an array initializer in any order and implicitly
initialize some array elements. The designated initializers use the array index to
establish correspondence between an array element and an array initializer element. For
instance, the statement int arr[6] = { [4] = 29, [2] = 15 } is equivalent to
int arr[6] = { 0, 0, 15, 0, 29, 0 }.

You can use initializers incorrectly in one of the following ways.

Issue Risk Possible Fix

In your initializer for a one-
dimensional array, you have
more elements than the
array size.

Unused array initializer
elements indicate a possible
coding error.

Increase the array size or
remove excess elements.

You place the braces
enclosing initializer values
incorrectly.

Because of the incorrect
placement of braces, some
array initializer elements
are not used.

Unused array initializer
elements indicate a possible
coding error.

Place braces correctly.

In your designated
initializer, you do not
initialize the first element of
the array explicitly.

The implicit initialization
of the first array element
indicates a possible
coding error. You possibly
overlooked the fact that

Initialize all elements
explicitly.

3-137

3 Checks

Issue Risk Possible Fix

array indexing starts from
0.

In your designated
initializer, you initialize an
element twice.

The first initialization is
overridden.

The redundant first
initialization indicates a
possible coding error.

Remove the redundant
initialization.

You use designated and
nondesignated initializers
in the same initialization.

You or another reviewer of
your code cannot determine
the size of the array by
inspection.

Use either designated or
nondesignated initializers.

Examples

Incorrectly Placed Braces (C Only)

int arr[2][3]

= {{1, 2},

 {3, 4},

 {5, 6}

};

In this example, the array arr is initialized as {1,2,0,3,4,0}. Because the initializer
contains {5,6}, you might expect the array to be initialized {1,2,3,4,5,6}.

Correction — Place Braces Correctly

One possible correction is to place the braces correctly so that all elements are explicitly
initialized.

int a1[2][3]

= {{1, 2, 3},

 {4, 5, 6}

};

3-138

 Improper array initialization

First Element Not Explicitly Initialized

int arr[5]

= {

 [1] = 2,

 [2] = 3,

 [3] = 4,

 [4] = 5

};

In this example, arr[0] is not explicitly initialized. It is possible that the programmer
did not consider that the array indexing starts from 0.

Correction — Explicitly Initialize All Elements

One possible correction is to initialize all elements explicitly.

int arr[5]

= {

 [0] = 1,

 [1] = 2,

 [2] = 3,

 [3] = 4,

 [4] = 5

};

Element Initialized Twice

int arr[5]

= {

 [0] = 1,

 [1] = 2,

 [2] = 3,

 [2] = 4,

 [4] = 5

};

In this example, arr[2] is initialized twice. The first initialization is overridden. In this
case, because arr[3] was not explicitly initialized, it is possible that the programmer
intended to initialize arr[3] when arr[2] was initialized a second time.

Correction — Fix Redundant Initialization

One possible correction is to eliminate the redundant initialization.

3-139

3 Checks

int arr[5]

= {

 [0] = 1,

 [1] = 2,

 [2] = 3,

 [3] = 4,

 [4] = 5

};

Mix of Designated and Nondesignated Initializers

int arr[]

= {

 [0] = 1,

 [3] = 3,

 4,

 [5] = 5,

 6

 };

In this example, because a mix of designated and nondesignated initializers are used, it
is difficult to determine the size of arr by inspection.

Correction — Use Only Designated Initializers

One possible correction is to use only designated initializers for array initialization.

int arr[]

= {

 [0] = 1,

 [3] = 3,

 [4] = 4,

 [5] = 5,

 [6] = 6

};

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: improper_array_init
Impact: Medium

3-140

 Improper array initialization

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE–665: Improper Initialization
• CERT C — ARR02-C: Explicitly specify array bounds, even if implicitly defined by

an initializer

Introduced in R2015b

3-141

http://cwe.mitre.org/data/definitions/665.html
https://www.securecoding.cert.org/confluence/display/c/ARR02-C.+Explicitly+specify+array+bounds%2C+even+if+implicitly+defined+by+an+initializer
https://www.securecoding.cert.org/confluence/display/c/ARR02-C.+Explicitly+specify+array+bounds%2C+even+if+implicitly+defined+by+an+initializer

3 Checks

Incompatible types prevent overriding
Derived class method hides a virtual base class method instead of overriding it

Description

Incompatible types prevent overriding occurs when a derived class method has the
same name and number of parameters as a virtual base class method but:

• Differ in at least one parameter type.
• Differ in the presence or absence of qualifiers such as const.

The derived class method hides the virtual base class method instead of overriding it.

Risk

Risks include the following:

• If you intend that the derived class method must override the base class method, the
overriding does not occur.

• Because the base class method is hidden, you cannot use a derived class object to
call the method. If you use a derived class object to call the method with the base
class parameters, the derived class method is called instead. For the parameters
whose types do not match the arguments that you pass, a cast takes place if possible.
Otherwise, a compilation failure occurs.

Fix

Possible solutions include the following:

• If you want the derived class method to override the base class method, change the
interface of the derived class method.

For instance, change the parameter type or add a const qualifier if required.
• Otherwise, add the line using Base_class_name::method_name to the derived

class declaration. In this way, you can access the base class method using an object of
the derived class.

3-142

 Incompatible types prevent overriding

Examples

typedef Causing Virtual Function Hiding in Derived Class

class Base {

public:

 Base();

 virtual ~Base();

 virtual void func(float i);

 virtual void funcp(float* i);

 virtual void funcr(float& i);

};

typedef double Float;

class Derived: public Base {

public:

 Derived();

 ~Derived();

 void func(Float i);

 void funcp(Float* i);

 void funcr(Float& i);

};

In this example, because of the statement typedef double Float;, the Derived class
methods func, funcp and funcr have double arguments while the Base class methods
with the same name have float arguments.

Therefore, you cannot access the Base class methods using a Derived class object.

The defect appears on the method that hides a base class method. To find which base
class method is hidden:

1 Navigate to the base class definition. On the Source pane, right-click the base class
name and select Go To Definition.

2 In the base class definition, identify the virtual method that has the same name as
the derived class method name.

Correction — Unhide Base Class Method

One possible correction is to use the same argument type for the base and derived
class methods to enable overriding. Otherwise, if you want to call the Base class

3-143

3 Checks

methods with the float arguments using a Derived class object, add the line using
Base::method_name to the Derived class declaration.

class Base {

public:

 Base();

 virtual ~Base();

 virtual void func(float i);

 virtual void funcp(float* i);

 virtual void funcr(float& i);

};

typedef double Float;

class Derived: public Base {

public:

 Derived();

 ~Derived();

 using Base::func;

 using Base::funcp;

 using Base::funcr;

 void func(Float i);

 void funcp(Float* i);

 void funcr(Float& i);

};

const Qualifier Missing in Derived Class Method

namespace Missing_Const {

class Base {

public:

 virtual void func(int) const ;

 virtual ~Base() ;

} ;

class Derived : public Base {

public:

 virtual void func(int) ;

} ;

}

In this example, Derived::func does not have a const qualifier but Base::func does.
Therefore, Derived::func does not override Base::func.

3-144

 Incompatible types prevent overriding

Correction — Add const Qualifier to Derived Class Method

To enable overriding, add the const qualifier to the derived class method declaration.

namespace Missing_Const {

class Base {

public:

 virtual void func(int) const ;

 virtual ~Base() ;

} ;

class Derived : public Base {

public:

 virtual void func(int) const;

} ;

}

Value Instead of Reference in Derived Class Method

namespace Missing_Ref {

class Obj {

 int data;

};

class Base {

public:

 virtual void func(Obj& o);

 virtual ~Base() ;

} ;

class Derived : public Base {

public:

 virtual void func(Obj o) ;

} ;

}

In this example, Derived::func accepts an Obj parameter by value but Base::func
accepts an Obj parameter by reference. Therefore, Derived::func does not override
Base::func.

3-145

3 Checks

Correction — Use Reference for Parameter of Derived Class Method

To enable overriding, pass the derived class method parameter by reference.

namespace Missing_Ref {

class Obj {

 int data;

};

class Base {

public:

 virtual void func(Obj& o);

 virtual ~Base() ;

} ;

class Derived : public Base {

public:

 virtual void func(Obj& o) ;

} ;

}

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: virtual_func_hiding
Impact: Medium

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2015b

3-146

 Incorrect pointer scaling

Incorrect pointer scaling
Implicit scaling in pointer arithmetic might be ignored

Description

Incorrect pointer scaling occurs when Polyspace Bug Finder considers that you are
ignoring the implicit scaling in pointer arithmetic.

For instance, the defect can occur in the following situations.

Situation Risk Possible Fix

You use the sizeof
operator in arithmetic
operations on a pointer.

The sizeof operator
returns the size of a data
type in number of bytes.

Pointer arithmetic is
already implicitly scaled
by the size of the data
type of the pointed
variable. Therefore, the
use of sizeof in pointer
arithmetic produces
unintended results.

Do not use sizeof operator
in pointer arithmetic.

You perform arithmetic
operations on a pointer, and
then apply a cast.

Pointer arithmetic is
implicitly scaled. If you do
not consider this implicit
scaling, casting the result
of a pointer arithmetic
produces unintended
results.

Apply the cast before the
pointer arithmetic.

Examples

Use of sizeof Operator

void func(void) {

3-147

3 Checks

 int arr[5] = {1,2,3,4,5};

 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2*(sizeof(int)));

}

In this example, the operation 2*(sizeof(int)) returns twice the size of an int
variable in bytes. However, because pointer arithmetic is implicitly scaled, the number of
bytes by which ptr is offset is 2*(sizeof(int))*(sizeof(int)).

In this example, the incorrect scaling shifts ptr outside the bounds of the array.
Therefore, a Pointer access out of bounds error appears on the * operation.

Correction — Remove sizeof Operator

One possible correction is to remove the sizeof operator.

void func(void) {

 int arr[5] = {1,2,3,4,5};

 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2);

}

Cast Following Pointer Arithmetic

int func(void) {

 int x = 0;

 char r = *(char *)(&x + 1);

 return r;

}

In this example, the operation &x + 1 offsets &x by sizeof(int). Following the
operation, the resulting pointer points outside the allowed buffer. When you dereference
the pointer, a Pointer access out of bounds error appears on the * operation.

Correction — Apply Cast Before Pointer Arithmetic

If you want to access the second byte of x, first cast &x to a char* pointer and then
perform the pointer arithmetic. The resulting pointer is offset by sizeof(char) bytes
and still points within the allowed buffer, whose size is sizeof(int) bytes.

int func(void) {

3-148

 Incorrect pointer scaling

 int x = 0;

 char r = *((char *)(&x)+ 1);

 return r;

}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: bad_ptr_scaling
Impact: Medium

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE 468: Incorrect Pointer Scaling
• CERT C — ARR39-C: Do not add or subtract a scaled integer to a pointer
• CERT C — EXP08-C— Ensure pointer arithmetic is used correctly

Introduced in R2015b

3-149

http://cwe.mitre.org/data/definitions/468.html
https://www.securecoding.cert.org/confluence/display/c/ARR39-C.+Do+not+add+or+subtract+a+scaled+integer+to+a+pointer
https://www.securecoding.cert.org/confluence/display/c/EXP08-C.+Ensure+pointer+arithmetic+is+used+correctly

3 Checks

Integer conversion overflow
Overflow when converting between integer types

Description

Integer conversion overflow occurs when converting an integer to a smaller integer
type. If the variable does not have enough bytes to represent the original constant, the
conversion overflows.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples

Converting from int to char

char convert(void) {

 int num = 1000000;

 return (char)num;

}

In the return statement, the integer variable num is converted to a char. However, an 8-
bit or 16-bit character cannot represent 1000000 because it requires at least 20 bits. So
the conversion operation overflows.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the
entire number.

long convert(void) {

 int num = 1000000;

 return (long)num;

3-150

 Integer conversion overflow

}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: int_conv_ovfl
Impact: High

See Also
Float conversion overflow | Unsigned integer conversion overflow | Sign change integer
conversion overflow | Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-190: Integer Overflow or Wraparound
• CWE-191: Integer Underflow (Wrap or Wraparound)
• CWE-197: Numeric Truncation Error
• CERT C — FLP34-C: Ensure that floating-point conversions are within range of the

new type
• CERT C — INT02-C: Understand integer conversion rules
• CERT C — INT18-C: Evaluate integer expressions in a larger size before comparing

or assigning to that size
• CERT C — INT31-C: Ensure that integer conversions do not result in lost or

misinterpreted data

Introduced in R2013b

3-151

http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
http://cwe.mitre.org/data/definitions/197.html
https://www.securecoding.cert.org/confluence/display/c/FLP34-C.+Ensure+that+floating-point+conversions+are+within+range+of+the+new+type
https://www.securecoding.cert.org/confluence/display/c/FLP34-C.+Ensure+that+floating-point+conversions+are+within+range+of+the+new+type
https://www.securecoding.cert.org/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://www.securecoding.cert.org/confluence/display/c/INT18-C.+Evaluate+integer+expressions+in+a+larger+size+before+comparing+or+assigning+to+that+size
https://www.securecoding.cert.org/confluence/display/c/INT18-C.+Evaluate+integer+expressions+in+a+larger+size+before+comparing+or+assigning+to+that+size
https://www.securecoding.cert.org/confluence/display/c/INT31-C.+Ensure+that+integer+conversions+do+not+result+in+lost+or+misinterpreted+data
https://www.securecoding.cert.org/confluence/display/c/INT31-C.+Ensure+that+integer+conversions+do+not+result+in+lost+or+misinterpreted+data

3 Checks

Integer division by zero

Dividing integer number by zero

Description

Integer division by zero occurs when the denominator of a division or modulo
operation is zero.

Examples

Dividing an Integer by Zero

int fraction(int num)

{

 int denom = 0;

 int result = 0;

 result = num/denom;

 return result;

}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

int fraction(int num)

{

 int denom = 0;

 int result = 0;

 if (denom != 0)

 result = num/denom;

 return result;

}

3-152

 Integer division by zero

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

int fraction(int num)

{

 int denom = 2;

 int result = 0;

 result = num/denom;

 return result;

}

Modulo Operation with Zero

int mod_arr(int input)

{

 int arr[5];

 for(int i = 0; i < 5; i++)

 {

 arr[i] = input % i;

 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];

}

In this example, Polyspace flags the modulo operation as a division by zero. Because
modulo is inherently a division operation, the divisor (right hand argument) cannot be
zero. The modulo operation uses the for loop index as the divisor. However, the for loop
starts at zero, which cannot be an iterator.

Correction — Check Divisor Before Operation

One possible correction is checking the divisor before the modulo operation. In this
example, see if the index i is zero before the modulo operation.

int mod_arr(int input)

{

 int arr[5];

3-153

3 Checks

 for(int i = 0; i < 5; i++)

 {

 if(i != 0)

 {

 arr[i] = input % i;

 }

 else

 {

 arr[i] = input;

 }

 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];

}

Correction — Change Divisor

Another possible correction is changing the divisor to a nonzero integer. In this example,
add one to the index before the % operation to avoid dividing by zero.

int mod_arr(int input)

{

 int arr[5];

 for(int i = 0; i < 5; i++)

 {

 arr[i] = input % (i+1);

 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];

}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: int_zero_div
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

3-154

 Integer division by zero

Polyspace Results
Float division by zero on page 3-125

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-369: Divide By Zero
• CERT C — INT33-C: Ensure that division and remainder operations do not result

in divide-by-zero errors

Introduced in R2013b

3-155

http://cwe.mitre.org/data/definitions/369.html
https://www.securecoding.cert.org/confluence/display/c/INT33-C.+Ensure+that+division+and+remainder+operations+do+not+result+in+divide-by-zero+errors
https://www.securecoding.cert.org/confluence/display/c/INT33-C.+Ensure+that+division+and+remainder+operations+do+not+result+in+divide-by-zero+errors

3 Checks

Integer overflow
Overflow from operation between integers

Description

Integer overflow occurs when an operation on integer variables exceeds the space
available to represent the resulting value.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples

Addition of Maximum Integer

#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;

 var++;

 return var;

}

In the third statement of this function, the variable var is increased by one. But the
value of var is the maximum integer value, so an int cannot represent one plus the
maximum integer value.

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a
larger data type (Note that on a 32-bit machine, int and long has the same size). In this
example, on a 32-bit machine, by returning a long long instead of an int, the overflow
error is fixed.

#include <limits.h>

long long plusplus(void) {

3-156

 Integer overflow

 long long lvar = INT_MAX;

 lvar++;

 return lvar;

}

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: int_ovfl
Impact: Medium

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Unsigned integer overflow | Float overflow

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-190: Integer Overflow or Wraparound
• CWE-191: Integer Underflow (Wrap or Wraparound)
• CERT C — INT00-C: Understand the data model used by your implementation(s)
• CERT C — INT02-C: Understand integer conversion rules
• CERT C — INT08-C: Verify that all integer values are in range
• CERT C — INT18-C: Evaluate integer expressions in a larger size before comparing

or assigning to that size
• CERT C — INT32-C: Ensure that operations on signed integers do not result in

overflow

3-157

http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4374
https://www.securecoding.cert.org/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://www.securecoding.cert.org/confluence/display/c/INT08-C.+Verify+that+all+integer+values+are+in+range
https://www.securecoding.cert.org/confluence/display/c/INT18-C.+Evaluate+integer+expressions+in+a+larger+size+before+comparing+or+assigning+to+that+size
https://www.securecoding.cert.org/confluence/display/c/INT18-C.+Evaluate+integer+expressions+in+a+larger+size+before+comparing+or+assigning+to+that+size
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow

3 Checks

Introduced in R2013b

3-158

 Invalid assumptions about memory organization

Invalid assumptions about memory organization
Address is computed by adding or subtracting from address of a variable

Description
Invalid assumptions about memory organization occurs when you compute the
address of a variable in the stack by adding or subtracting from the address of another
non-array variable.

Risk

When you compute the address of a variable in the stack by adding or subtracting from
the address of another variable, you assume a certain memory organization. If your
assumption is incorrect, accessing the computed address can be invalid.

Fix

Do not perform an access that relies on assumptions about memory organization.

Examples

Reliance on Memory Organization

void func(void) {

 int var1 = 0x00000011, var2;

 *(&var1 + 1) = 0;

}

In this example, the programmer relies on the assumption that &var1 + 1 provides the
address of var2. Therefore, an Invalid assumptions about memory organization
appears on the + operation. In addition, a Pointer access out of bounds error also
appears on the dereference.

Correction — Do Not Rely on Memory Organization

One possible correction is not perform direct computation on addresses to access
separately declared variables.

3-159

3 Checks

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: invalid_memory_assumption
Impact: Medium

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE–188: Reliance on Data/Memory Layout
• CERT C — ARR37-C: Do not add or subtract an integer to a pointer to a non-array

object

Introduced in R2015b

3-160

http://cwe.mitre.org/data/definitions/188.html
https://www.securecoding.cert.org/confluence/display/c/ARR37-C.+Do+not+add+or+subtract+an+integer+to+a+pointer+to+a+non-array+object
https://www.securecoding.cert.org/confluence/display/c/ARR37-C.+Do+not+add+or+subtract+an+integer+to+a+pointer+to+a+non-array+object

 Invalid deletion of pointer

Invalid deletion of pointer
Pointer deallocation using delete without corresponding allocation using new

Description

Invalid deletion of pointer occurs when a block of memory released using the delete
operator was not previously allocated with the new operator.

This defect applies only to C++ source files.

Examples

Deleting Static Memory

void assign_ones(void)

{

 int ptr[10];

 for(int i=0;i<10;i++)

 *(ptr+i)=1;

 delete[] ptr;

}

The pointer ptr is released using the delete operator. However, ptr points to a
memory location that was not dynamically allocated.

Correction: Remove Pointer Deallocation

If the number of elements of the array ptr is known at compile time, one possible
correction is to remove the deallocation of the pointer ptr.

void assign_ones(void)

{

 int ptr[10];

 for(int i=0;i<10;i++)

3-161

3 Checks

 *(ptr+i)=1;

}

Correction — Add Pointer Allocation

If the number of array elements is not known at compile time, one possible correction is
to dynamically allocate memory to the array ptr using the new operator.

void assign_ones(int num)

{

 int *ptr = new int[num];

 for(int i=0; i < num; i++)

 *(ptr+i) = 1;

 delete[] ptr;

 }

Mismatched new and delete

int main (void)

{

 int *p_scale = new int[5];

 //more code using scal

 delete p_scale;

}

In this example, p_scale is initialized to an array of size 5 using new int[5].
However, p_scale is deleted with delete instead of delete[]. The new-delete pair
does not match. Do not use delete without the brackets when deleting arrays.

Correction — Match delete to new

One possible correction is to add brackets so the delete matches the new []
declaration.

int main (void)

{

 int *p_scale = new int[5];

 //more code using p_scale

3-162

 Invalid deletion of pointer

 delete[] p_scale;

}

Correction — Match new to delete

Another possible correction is to change the declaration of p_scale. If you meant to
initialize p_scale as 5 itself instead of an array of size 5, you must use different syntax.
For this correction, change the square brackets in the initialization to parentheses. Leave
the delete statement as it is.

int main (void)

{

 int *p_scale = new int(5);

 //more code using p_scale

 delete p_scale;

}

Check Information
Group: Dynamic memory
Language: C++
Default: Off
Command-Line Syntax: bad_delete
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid free of pointer | Memory leak

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

3-163

3 Checks

External Websites
• CWE-404

Introduced in R2013b

3-164

http://cwe.mitre.org/data/definitions/404.html

 Invalid free of pointer

Invalid free of pointer
Pointer deallocation without a corresponding dynamic allocation

Description

Invalid free of pointer occurs when a block of memory released using the free
function was not previously allocated using malloc, calloc, or realloc.

Examples

Invalid Free of Pointer Error

#include <stdlib.h>

void Assign_Ones(void)

{

 int p[10];

 for(int i=0;i<10;i++)

 *(p+i)=1;

 free(p);

 /* Defect: p does not point to dynamically allocated memory */

}

The pointer p is deallocated using the free function. However, p points to a memory
location that was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction
is to remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)

 {

 int p[10];

 for(int i=0;i<10;i++)

3-165

3 Checks

 *(p+i)=1;

 /* Fix: Remove deallocation of p */

 }

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time, one possible
correction is to dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)

{

 int *p;

 /* Fix: Allocate memory dynamically to p */

 p=(int*) calloc(10,sizeof(int));

 for(int i=0;i<10;i++)

 *(p+i)=1;

 free(p);

}

Check Information
Group: Dynamic Memory
Language: C | C++
Default: On
Command-Line Syntax: bad_free
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid deletion of pointer

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

3-166

 Invalid free of pointer

External Websites
• CWE-404: Improper Resource Shutdown or Release
• CWE-590: Free of Memory not on the Heap
• CWE-762: Mismatched Memory Management Routines
• CERT C — MEM00-C: Allocate and free memory in the same module, at the same

level of abstraction
• CERT C — MEM34-C: Only free memory allocated dynamically

Introduced in R2013b

3-167

http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/590.html
http://cwe.mitre.org/data/definitions/762.html
https://www.securecoding.cert.org/confluence/display/c/MEM00-C.+Allocate+and+free+memory+in+the+same+module%2C+at+the+same+level+of+abstraction
https://www.securecoding.cert.org/confluence/display/c/MEM00-C.+Allocate+and+free+memory+in+the+same+module%2C+at+the+same+level+of+abstraction
https://www.securecoding.cert.org/confluence/display/c/MEM34-C.+Only+free+memory+allocated+dynamically

3 Checks

Invalid use of == operator
Equality operation in assignment statement

Description

Invalid use of == operator occurs when an equality operator instead of an assignment
operator is used in a simple statement. A common correction is removing one of the equal
signs (=).

Examples

Equality Evaluation in for-Loop

void populate_array(void)

{

 int i = 0;

 int j = 0;

 int array[4];

 for (j == 5; j < 9; j++) {

 array[i] = j;

 i++;

 }

}

Inside the for-loop, the statement j == 5 tests whether j is equal to 5 instead of
setting j to 5. The for-loop iterates from 0 to 8 because j starts with a value of 0, not 5.
A by-product of the invalid equality operator is an out-of-bounds array access in the next
line.

Correction — Change to Assignment Operator

One possible correction is to change the == operator to a single equal sign (=). Changing
the == sign resolves both defects because the for-loop iterates the intended number of
times.

void populate_array(void)

3-168

 Invalid use of == operator

{

 int i = 0;

 int j = 0;

 int array[4];

 for (j = 5; j < 9; j++) {

 array[i] = j;

 i++;

 }

}

Check Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: bad_equal_equal_use
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of = operator

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-482

Introduced in R2013b

3-169

http://cwe.mitre.org/data/definitions/482.html

3 Checks

Invalid use of = operator
Assignment in conditional statement

Description

Invalid use of = operator occurs when an assignment is made inside the predicate of a
conditional, such as if or while.

In C and C++, a single equal sign is an assignment not a comparison. Using a single
equal sign in a conditional statement can indicate a typo or a mistake.

Risk

• Conditional statement tests the wrong values— The single equal sign operation
assigns the value of the right operand to the left operand. Then, because this
assignment is inside the predicate of a conditional, the program checks whether the
new value of the left operand is nonzero or not NULL.

• Maintenance and readability issues — Someone reading or updating the code can
misinterpret the assignment as an equality comparison instead of an assignment.

Fix

• If the assignment is a bug, to check for equality, add a second equal sign (==).
• If the assignment inside the conditional statement was intentional, to improve

readability explicitly test the result of the assignment or move the assignment outside
the control statement.

Examples

Single Equal Sign Inside an if Condition

#include <stdio.h>

void bad_equals_ex(int alpha, int beta)

3-170

 Invalid use of = operator

{

 if(alpha = beta)

 {

 printf("Equal\n");

 }

}

The equal sign is flagged as a defect because the assignment operator is used within
the predicate of the if-statement. The predicate assigns the value beta to alpha, then
implicitly tests whether alpha is true or false.

Correction — Change Expression to Comparison

One possible correction is adding an additional equal sign. This correction changes the
assignment to a comparison. The if condition compares whether alpha and beta are
equal.

#include <stdio.h>

void equality_test(int alpha, int beta)

{

 if(alpha == beta)

 {

 printf("Equal\n");

 }

}

Correction — Assignment and Comparison Inside the if Condition

If an assignment must be made inside the predicate, a possible correction is adding an
explicit comparison. This correction assigns the value of beta to alpha, then explicitly
checks whether alpha is nonzero. The code is clearer.

#include <stdio.h>

int assignment_not_zero(int alpha, int beta)

{

 if((alpha = beta) != 0)

 {

 return alpha;

 }

 else

 {

 return 0;

3-171

3 Checks

 }

}

Correction — Move Assignment Outside the if Statement

If the assignment can be made outside the control statement, one possible correction is
to separate the assignment and comparison. This correction assigns the value of beta
to alpha before the if. Inside the if-condition, only alpha is given to test if alpha is
nonzero or not NULL.

#include <stdio.h>

void assign_and_print(int alpha, int beta)

{

 alpha = beta;

 if(alpha)

 {

 printf("%d", alpha);

 }

}

Check Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: bad_equal_use
Impact: Medium

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of == operator

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

3-172

 Invalid use of = operator

External Websites
• CWE-481
• CERT C — EXP45-C

Introduced in R2013b

3-173

http://cwe.mitre.org/data/definitions/481.html
https://www.securecoding.cert.org/confluence/x/nYFtAg

3 Checks

Invalid use of floating point operation
Imprecise comparison of floating point variables

Description

Invalid use of floating point operation occurs when you use an equality (==) or
inequality (!=) operation with floating point numbers. It is possible that the equality or
inequality of two floating point values is not exact because floating point representation
can be imprecise.

There are two situations when Polyspace does not flag floating point comparison: when
one of the operands is 0.0 because zero can be represented exactly, and when comparing
a variable against itself such as foo == foo or foo != foo.

Examples

Two Equal Floats

float onePointOne(void) {

 float flt = 1.0;

 if (flt == 1.1)

 return flt;

 return 0;

}

In this function, the if-statement tests the equality of flt and the number 1.1. Even
though the equality in this function is obvious (1.0 is not equal to 1.1), longer floating
point values are not quite so simple. Do not use equality with floating points because it
can produce unexpected behavior.

Correction — Change the Operator

One possible correction is to use a different operator that is not as strict. For example, an
inequality like > or <.

#include <math.h>

#include <float.h>

3-174

 Invalid use of floating point operation

float onePointOne(void) {

 float flt = 1.0;

 if (fabs(flt-1.1) < FLT_EPSILON)

 return flt;

 return 0;

}

Correction — Change the Operands

Another possible correction is to change the operands to more precise data types. In this
example, using integers instead of floats corrects the error.

int onePointOne(void) {

 int flt = 1;

 if (flt == 1)

 return flt;

 return 0;

}

Check Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: bad_float_op
Impact: Medium

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-873: CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP)

Introduced in R2013b

3-175

http://cwe.mitre.org/data/definitions/873.html

3 Checks

Invalid use of standard library routine

Wrong arguments to standard library function

Description

Invalid use of standard library routine occurs when you use invalid arguments
with a function from the standard library. This defect picks up errors related to other
functions not covered by float, integer, memory, or string standard library routines.

Examples

Calling printf Without a String

#include <stdio.h>

#include <stdlib.h>

void print_null(void) {

 printf(NULL);

}

The function printf takes only string input arguments or format specifiers. In this
function, the input value is NULL, which is not a valid string.

Correction — Use Compatible Input Arguments

One possible correction is to change the input arguments to fit the requirements of
the standard library routine. In this example, the input argument was changed to a
character.

#include <stdio.h>

void print_null(void) {

 char zero_val = '0';

 printf((const char*)zero_val);

}

3-176

 Invalid use of standard library routine

Check Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: other_std_lib
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library integer routine | Invalid use of standard library floating
point routine | Invalid use of standard library memory routine | Invalid use of standard
library string routine

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE 227: Improper Fulfillment of API Contract
• CERT C — API00-C: Functions should validate their parameters

Introduced in R2013b

3-177

http://cwe.mitre.org/data/definitions/227.html
https://www.securecoding.cert.org/confluence/display/c/API00-C.+Functions+should+validate+their+parameters

3 Checks

Invalid use of standard library floating point routine

Wrong arguments to standard library function

Description

Invalid use of standard library floating point routine occurs when you use invalid
arguments with a floating point function from the standard library. This defect picks up:

• Rounding and absolute value routines

ceil, fabs, floor, fmod

• Fractions and division routines

fmod, modf

• Exponents and log routines

frexp, ldexp, sqrt, pow, exp, log, log10

• Trigonometry function routines

cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh, acosh,

asinh, atanh

Examples

Arc Cosine Operation

#include <math.h>

double arccosine(void) {

 double degree = 5.0;

 return acos(degree);

}

The input value to acos must be in the interval [-1,1]. This input argument, degree,
is outside this range.

3-178

 Invalid use of standard library floating point routine

Correction — Change Input Argument

One possible correction is to change the input value to fit the specified range. In this
example, change the input value from degrees to radians to fix this defect.

#include <math.h>

double arccosine(void) {

 double degree = 5.0;

 double radian = degree * 3.14159 / 180.;

 return acos(radian);

}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: float_std_lib
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library integer routine | Invalid use of standard library memory
routine | Invalid use of standard library string routine | Invalid use of standard library
routine

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-227: Improper Fulfillment of API Contract ('API Abuse')
• CWE-369: Divide By Zero

3-179

http://cwe.mitre.org/data/definitions/227.html
http://cwe.mitre.org/data/definitions/369.html

3 Checks

• CWE-682: Incorrect Calculation
• CWE-873: CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP)
• CERT C — FLP03-C: Detect and handle floating-point errors
• CERT C — FLP32-C: Prevent or detect domain and range errors in math functions

Introduced in R2013b

3-180

http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/display/c/FLP03-C.+Detect+and+handle+floating-point+errors
https://www.securecoding.cert.org/confluence/display/c/FLP32-C.+Prevent+or+detect+domain+and+range+errors+in+math+functions

 Invalid use of standard library integer routine

Invalid use of standard library integer routine
Wrong arguments to standard library function

Description

Invalid use of standard library integer routine occurs when you use invalid
arguments with an integer function from the standard library. This defect picks up:

• Character Conversion

toupper, tolower

• Character Checks

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,

ispunct, isspace, isupper, isxdigit

• Integer Division

div, ldiv

• Absolute Values

abs, labs

Examples

Absolute Value of Large Negative

#include <limits.h>

#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN;

 return abs(neg);

}

The input value to abs is INT_MIN. The absolute value of INT_MIN is INT_MAX+1. This
number cannot be represented by the type int.

3-181

3 Checks

Correction — Change Input Argument

One possible correction is to change the input value to fit returned data type. In this
example, change the input value to INT_MIN+1.

#include <limits.h>

#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN+1;

 return abs(neg);

}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: int_std_lib
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library floating point routine | Invalid use of standard library
memory routine | Invalid use of standard library string routine | Invalid use of standard
library routine

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-227: Improper fulfillment of API contract

3-182

http://cwe.mitre.org/data/definitions/227.html

 Invalid use of standard library integer routine

• CWE-369: Divide By Zero
• CWE-682: Incorrect Calculation
• CWE-872: CERT C++ Secure Coding Section 04 - Integers (INT)

Introduced in R2013b

3-183

http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/872.html

3 Checks

Invalid use of standard library memory routine
Standard library memory function called with invalid arguments

Description

Invalid use of standard library memory routine occurs when a memory library
function is called with invalid arguments.

Examples

Invalid Use of Standard Library Memory Routine Error

#include <string.h>

#include <stdio.h>

char* Copy_First_Six_Letters(void)

 {

 char str1[10],str2[5];

 printf("Enter string:\n");

 scanf("%s",str1);

 memcpy(str2,str1,6);

 /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

 return str2;

 }

The size of string str2 is 5, but six characters of string str1 are copied into str2 using
the memcpy function.

Correction — Call Function with Valid Arguments

One possible correction is to adjust the size of str2 so that it accommodates the
characters copied with the memcpy function.

#include <string.h>

#include <stdio.h>

3-184

 Invalid use of standard library memory routine

char* Copy_First_Six_Letters(void)

 {

 /* Fix: Declare str2 with size 6 */

 char str1[10],str2[6];

 printf("Enter string:\n");

 scanf("%s",str1);

 memcpy(str2,str1,6);

 return str2;

 }

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: mem_std_lib
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library string routine

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
• CWE-227: Improper Fulfillment of API Contract ('API Abuse')
• CERT C — ARR38-C: Guarantee that library functions do not form invalid pointers
• CERT C — API00-C: Functions should validate their parameters

3-185

http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/227.html
https://www.securecoding.cert.org/confluence/display/c/ARR38-C.+Guarantee+that+library+functions+do+not+form+invalid+pointers
https://www.securecoding.cert.org/confluence/display/c/API00-C.+Functions+should+validate+their+parameters

3 Checks

Introduced in R2013b

3-186

 Invalid use of standard library string routine

Invalid use of standard library string routine
Standard library string function called with invalid arguments

Description

Invalid use of standard library string routine occurs when a string library function
is called with invalid arguments.

Examples

Invalid Use of Standard Library String Routine Error

 #include <string.h>

 #include <stdio.h>

 char* Copy_String(void)

 {

 char *res;

 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 /* Error: Size of text is less than gbuffer */

 return(res);

 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>

 #include <stdio.h>

 char* Copy_String(void)

3-187

3 Checks

 {

 char *res;

 /*Fix: gbuffer has equal or larger size than text */

 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);

 }

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: str_std_lib
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library memory routine

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
• CWE-227: Improper Fulfillment of API Contract ('API Abuse')
• CERT C — API00-C: Functions should validate their parameters
• CERT C — ARR38-C: Guarantee that library functions do not form invalid pointers
• CERT C — STR31-C: Guarantee that storage for strings has sufficient space for

character data and null terminator

3-188

http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/227.html
https://www.securecoding.cert.org/confluence/display/c/API00-C.+Functions+should+validate+their+parameters
https://www.securecoding.cert.org/confluence/display/c/ARR38-C.+Guarantee+that+library+functions+do+not+form+invalid+pointers
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

 Invalid use of standard library string routine

• CERT C — STR32-C: Do not pass a non-null-terminated character sequence to a
library function that expects a string

Introduced in R2013b

3-189

https://www.securecoding.cert.org/confluence/display/c/STR32-C.+Do+not+pass+a+non-null-terminated+character+sequence+to+a+library+function+that+expects+a+string
https://www.securecoding.cert.org/confluence/display/c/STR32-C.+Do+not+pass+a+non-null-terminated+character+sequence+to+a+library+function+that+expects+a+string

3 Checks

Invalid va_list argument

Variable argument list used after invalidation with va_end or not initialized with
va_start or va_copy

Description

Invalid va_list argument occurs when you use a va_list variable as an argument to a
function in the vprintf group but:

• You do not initialize the variable previously using va_start or va_copy.
• You invalidate the variable previously using va_end and do not reinitialize it.

For instance, you call the function vsprintf as vsprintf (buffer,format, args).
However, before the function call, you do not initialize the va_list variable args using
either of the following:

• va_start(args, paramName). paramName is the last named argument of a
variable-argument function. For instance, for the function definition void func(int
n, char c, ...) {}, c is the last named argument.

• va_copy(args, anotherList). anotherList is another valid va_list variable.

Risk

The behavior of an uninitialized va_list argument is undefined. Calling a function with
an uninitialized va_list argument can cause stack overflows.

Fix

Before using a va_list variable as function argument, initialize it with va_start or
va_copy.

Clean up the variable using va_end only after all uses of the variable.

3-190

 Invalid va_list argument

Examples

va_list Variable Used Following Call to va_end

#include <stdarg.h>

#include <stdio.h>

int call_vfprintf(int line, const char *format, ...) {

 va_list ap;

 int r=0;

 va_start(ap, format);

 r = vfprintf(stderr, format, ap);

 va_end(ap);

 r += vfprintf(stderr, format, ap);

 return r;

}

In this example, the va_list variable ap is used in the vfprintf function, after the
va_end macro is called.

Correction — Call va_end After Using va_list Variable

One possible correction is to call va_end only after all uses of the va_list variable.

#include <stdarg.h>

#include <stdio.h>

int call_vfprintf(int line, const char *format, ...) {

 va_list ap;

 int r=0;

 va_start(ap, format);

 r = vfprintf(stderr, format, ap);

 r += vfprintf(stderr, format, ap);

 va_end(ap);

 return r;

}

3-191

3 Checks

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: invalid_va_list_arg
Impact: High

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-628: Function Call with Incorrectly Specified Arguments
• CERT C — MSC39-C: Do not call va_arg() on a va_list that has an indeterminate

value

Introduced in R2015b

3-192

http://cwe.mitre.org/data/definitions/628.html
https://www.securecoding.cert.org/confluence/display/c/MSC39-C.+Do+not+call+va_arg%28%29+on+a+va_list+that+has+an+indeterminate+value
https://www.securecoding.cert.org/confluence/display/c/MSC39-C.+Do+not+call+va_arg%28%29+on+a+va_list+that+has+an+indeterminate+value

 Large pass-by-value argument

Large pass-by-value argument
Large argument passed by value between functions

Description

Large pass-by-value argument occurs when a large input argument or return value is
passed between functions by its value. For variables larger than 64 bytes, pass the value
by pointer or by reference to save stack space and copy time.

In C code, when a function returns by value, the return value is copied to the caller.
Therefore, this defect appears on functions that have large return values. In C++ code,
if a function return value is of class type, under certain conditions, the standard allows
compilers to avoid copying the return value (C++98: Section 12.8, Item 15; C++11:
Section 12.8, Item 31). Most compilers do not perform a copy in such cases. This behavior
is called return value optimization. In such cases, Polyspace Bug Finder does not produce
this defect if a large object is returned by value.

Examples

Large Function Argument

typedef struct s_userid {

 char name[2];

 int idnumber[100];

} userid;

char username(userid first) {

 return first.name[0];

}

The large structure, userid, is passed to the function username. Because userid is
larger than 64 bytes, this function produces a large pass-by-value defect.

Correction — Pass By Reference

One possible correction is to pass the argument by reference instead of by value. In this
corrected example, the pointer to a userid structure is passed instead of the actual
structure.

3-193

3 Checks

typedef struct s_userid {

 char name[2];

 int idnumber[100];

} userid;

char username(userid *first) {

 return (*first).name[0];

}

Large Function Return Value

#include <stdlib.h>

#define initialSize 4

#define idSize 100

typedef struct {

 char initials[initialSize];

 int id[idSize];

} userId;

userId* getAddress(void);

assignValues(char*, int*);

userId username(void) {

 userId * newId = getAddress();

 assignValues((*newId).initials, (*newId).id);

 return *newId;

}

In this example, the function username returns a large structure *newId by value.
When a function calls username, the value in *newId is copied to the caller.

Correction — Pass By Reference

One possible correction is to return the large structure by reference. In this corrected
example, the pointer to structure newId is returned from the function username.

#include <stdlib.h>

#define initialSize 4

#define idSize 100

typedef struct {

3-194

 Large pass-by-value argument

 char initials[initialSize];

 int id[idSize];

} userId;

userId* getAddress(void);

assignValues(char*, int*);

userId * username(void) {

 userId * newId = getAddress();

 assignValues((*newId).initials, (*newId).id);

 return newId;

}

Check Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: pass_by_value
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2013b

3-195

3 Checks

Line with more than one statement
Multiple statements on a line

Description

Before preprocessing starts, Line with more than one statement checks for additional
text after the semicolon (;) on a line. A defect is not raised for comments, for-loop
definitions, braces, or backslashes.

Examples

Single-Line Initialization

int multi_init(void){

_ int abc = 4; int efg = 0; //defect

 return abc*efg;

}

In this example, abc and efg are initialized on the second line of the function as
separate statements.

Correction — Comma-Separated Initialization

One possible correction is to use a comma instead of a semicolon to declare multiple
variables on the same line.

int multi_init(void){

 int a = 4, b = 0;

 return a*b;

}

Correction — New Line for Each Initialization

One possible correction is to separate each initialization. By putting the initialization of b
on the next line, the code longer raises a defect.

3-196

 Line with more than one statement

int multi_init(void){

 int a = 4;

 int b = 0;

 return a*b;

}

Single-Line Loops

int multi_loop(void){

 int a, b = 0;

 int index = 1;

 int tab[9] = {1,1,2,3,5,8,13,21};

 for(a=0; a < 3; a++) {b+=a;} // no defect

_ for(b=0; b < 3; b++) {a+=b; index=b;} //defect

_ while (index < 7) {index++; tab[index] = index * index;} //defect

 return a*b;

}

In this example, there are three loops coded on single lines, each with multiple
semicolons.

• The first for loop has multiple semicolons. Polyspace does not raise a defect for
multiple statements within a for loop declaration.

• Polyspace does raise a defect on the second for loop because there are multiple
statements after the for loop declaration.

• The while loop also has multiple statements after the loop declaration. Polyspace
raises a defect on this line.

Correction — New Line for Each Loop Statement

One possible correction is to use a new line for each statement after the loop declaration.

int multi_loop(void){

 int a, b = 0;

 int index = 1;

 int tab[9] = {1,1,2,3,5,8,13,21};

 for(a=0; a < 3; a++) {b+=a;}

3-197

3 Checks

 for(b=0; b < 3; b++){

 a+=b;

 index=b;

 }

 while (index < 7){

 index++;

 tab[index] = index * index;

 }

 return a*b;

}

Single-line Conditionals

int multi_if(void){

 int a, b = 1;

 if(a == 0) { a++;} // no defect

_ else if(b == 1) {b++; a *= b;} //defect

}

In this example, there are two conditional statements an: if and an else if. The if
line does not raise a defect because only one statement follows the condition. The else
if statement does raise a defect because two statements follow the condition.

Correction — New Lines for Multi-Statement Conditionals

One possible correction is to use a new line for conditions with multiple statements.

int multi_if(void){

 int a, b = 1;

 if(a == 0) a++;

 else if(b == 1){

 b++;

 a *= b;

 }

}

Check Information
Group: Good practice
Language: C | C++

3-198

 Line with more than one statement

Default: Off
Command-Line Syntax: more_than_one_statement
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2013b

3-199

3 Checks

Member not initialized in constructor
Constructor does not initialize some members of a class

Description

Non-initialized member occurs when a class constructor has at least one execution
path on which it does not initialize some data members of the class.

The defect does not appear in the following cases:

• Empty constructors.
• The non-initialized member is not used in the code.

Risk

The members that the constructor does not initialize can have unintended values when
you read them later.

Initializing all members in the constructor makes it easier to use your class. If you
call a separate method to initialize your members and then read them, you can avoid
uninitialized values. However, someone else using your class can read a class member
before calling your initialization method. Because a constructor is called when you create
an object of the class, if you initialize all members in the constructor, they cannot have
uninitialized values later on.

Fix

The best practice is to initialize all members in your constructor, preferably in an
initialization list.

Examples

Non-Initialized Member

class MyClass {

3-200

 Member not initialized in constructor

public:

 explicit MyClass(int);

private:

 int _i;

 char _c;

};

MyClass::MyClass(int flag) {

 if(flag == 0) {

 _i = 0;

 _c = 'a';

 }

 else {

 _i = 1;

 }

}

In this example, if flag is not 0, the member _c is not initialized.

The defect appears on the closing brace of the constructor. Following are some tips for
navigating in the source code:

• On the Result Details pane, see which members are not initialized.
• To navigate to the class definition, right-click a member that is initialized in the

constructor. Select Go To Definition. In the class definition, you can see all the
members, including those members that are not initialized in the constructor.

Correction — Initialize All Members on All Execution Paths

One possible correction is to initialize all members of the class MyClass for all values of
flag.

class MyClass {

public:

 explicit MyClass(int);

private:

 int _i;

 char _c;

};

MyClass::MyClass(int flag) {

 if(flag == 0) {

 _i = 0;

 _c = 'a';

3-201

3 Checks

 }

 else {

 _i = 1;

 _c = 'b';

 }

}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: non_init_member
Impact: Medium

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Copy constructor not called in initialization list

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-456: Missing Initialization of a Variable
• CWE-457: Use of Uninitialized Variable
• CWE-908: Use of Uninitialized Resource

Introduced in R2015b

3-202

http://cwe.mitre.org/data/definitions/456.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/908.html

 Memory leak

Memory leak
Memory allocated dynamically not freed

Description

Memory leak occurs when you do not free a block of memory allocated through malloc,
calloc, realloc, or new. If the memory is allocated in a function, the defect does not
occur if:

• Within the function, you free the memory using free or delete.
• The function returns the pointer assigned by malloc, calloc, realloc, or new.
• The function stores the pointer in a global variable or in a parameter.

Examples

Pointer with Dynamic Memory

#include<stdlib.h>

#include<stdio.h>

void assign_memory(void)

{

 int* pi = (int*)malloc(sizeof(int));

 if (pi == NULL)

 {

 printf("Memory allocation failed");

 return;

 }

 *pi = 42;

 /* Defect: pi is not freed */

}

In this example, pi is dynamically allocated by malloc. The function assign_memory
does not free the memory, nor does it return pi.

3-203

3 Checks

Correction — Free Memory

One possible correction is to free the memory referenced by pi using the free function.
The free function must be called before the function assign_memory terminates

#include<stdlib.h>

#include<stdio.h>

void assign_memory(void)

{

 int* pi = (int*)malloc(sizeof(int));

 if (pi == NULL)

 {

 printf("Memory allocation failed");

 return;

 }

 *pi = 42;

 /* Fix: Free the pointer pi*/

 free(pi);

}

Correction — Return Pointer from Dynamic Allocation

Another possible correction is to return the pointer pi. Returning pi allows the function
calling assign_memory to free the memory block using pi.

#include<stdlib.h>

#include<stdio.h>

int* assign_memory(void)

{

 int* pi = (int*)malloc(sizeof(int));

 if (pi == NULL)

 {

 printf("Memory allocation failed");

 return(pi);

 }

 *pi = 42;

 /* Fix: Return the pointer pi*/

 return(pi);

}

3-204

 Memory leak

Memory Leak with New/Delete

#define NULL '\0'

void initialize_arr1(void)

{

 int *p_scalar = new int(5);

}

void initialize_arr2(void)

{

 int *p_array = new int[5];

}

In this example, the functions create two variables, p_scalar and p_array, using the
new keyword. However, the functions end without cleaning up the memory for these
pointers. Because the functions used new to create these variables, you must clean up
their memory by calling delete at the end of each function.

Correction — Add Delete

To correct this error, add a delete statement for every new initialization. If you used
brackets [] to instantiate a variable, you must call delete with brackets as well.

#define NULL '\0'

void initialize_arrs(void)

{

 int *p_scalar = new int(5);

 int *p_array = new int[5];

 delete p_scalar;

 p_scalar = NULL;

 delete[] p_array;

 p_scalar = NULL;

}

Check Information
Group: Dynamic memory

3-205

3 Checks

Language: C | C++
Default: Off
Command-Line Syntax: mem_leak
Impact: Medium

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE–401: Improper Release of Memory Before Removing Last Reference
• CWE–404: Improper Resource Shutdown or Release
• CERT C — MEM11-C: Do not assume infinite heap space
• CERT C — MEM12-C: Consider a goto chain when leaving a function on error when

using and releasing resources
• CERT C — MEM31-C: Free dynamically allocated memory when no longer needed

Introduced in R2013b

3-206

http://cwe.mitre.org/data/definitions/401.html
http://cwe.mitre.org/data/definitions/404.html
https://www.securecoding.cert.org/confluence/display/c/MEM11-C.+Do+not+assume+infinite+heap+space
https://www.securecoding.cert.org/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources
https://www.securecoding.cert.org/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources
https://www.securecoding.cert.org/confluence/display/c/MEM31-C.+Free+dynamically+allocated+memory+when+no+longer+needed

 Missing case for switch condition

Missing case for switch condition
Default case is missing and may be reached

Description

Missing case for switch condition occurs when the switch variable can take values
that are not covered by a case statement.

Note: Bug Finder only raises a defect if the switch variable is not full range.

Risk

When you design the case statements, incorporating anticipated switch variable
values does not cover all cases. If the variable takes a value that is not covered by a
case statement, your program can have unintended behavior. For example, if you use
an enumerated type in the control expression, the possible values can still be outside the
enumeration constants.

An attacker can deviate the normal execution flow. A switch-statement that makes a
security decision is particularly vulnerable when all possible values are not explicitly
handled.

Fix

One possible correction is to use a default statement as a catch-all for possible values
that are not covered by a case statement.

Examples

Missing Default Condition

#include <stdio.h>

#include <string.h>

typedef enum E

3-207

3 Checks

{

 ADMIN=1,

 GUEST,

 UNKNOWN = 0

} LOGIN;

static LOGIN system_access(const char *username) {

 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)

 user = ADMIN;

 if (strcmp(username, "friend") == 0)

 user = GUEST;

 return user;

}

int identify_bad_user(const char * username)

{

 int r=0;

 switch(system_access(username))

 {

 case ADMIN:

 r = 1;

 break;

 case GUEST:

 r = 2;

 }

 printf("Welcome!\n");

 return r;

}

In this example, the enum parameter User can take a value UNKNOWN that is not covered
by a case statement.

Correction — Add a Default Condition

One possible correction is to add a default condition for possible values that are not
covered by a case statement.

#include <stdio.h>

#include <string.h>

3-208

 Missing case for switch condition

typedef enum E

{

 ADMIN=1,

 GUEST,

 UNKNOWN = 0

} LOGIN;

static LOGIN system_access(const char *username) {

 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)

 user = ADMIN;

 if (strcmp(username, "friend") == 0)

 user = GUEST;

 return user;

}

int identify_bad_user(const char * username)

{

 int r=0;

 switch(system_access(username))

 {

 case ADMIN:

 r = 1;

 break;

 case GUEST:

 r = 2;

 break;

 default:

 printf("Invalid login credentials!\n");

 }

 printf("Welcome!\n");

 return r;

}

Result Information
Group: Security

3-209

3 Checks

Language: C | C++
Default: Off
Command-Line Syntax: missing_switch_case
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-478: Missing Default Case in Switch Statement
• CERT C — MSC01-C: Strive for logical completeness
• CERT C — MSC07-C: Detect and remove dead code

Introduced in R2015b

3-210

http://cwe.mitre.org/data/definitions/478.html
https://www.securecoding.cert.org/confluence/display/c/MSC01-C.+Strive+for+logical+completeness
https://www.securecoding.cert.org/confluence/display/c/MSC07-C.+Detect+and+remove+dead+code

 Missing explicit keyword

Missing explicit keyword
Constructor missing the explicit specifier

Description
Missing explicit keyword occurs when the declaration of a constructor does not use
the explicit specifier. The explicit specifier prevents implicit conversion from a
variable of another type to the current class type.

The defect applies to:

• One-parameter constructors.
• Constructors where all but one parameters have default values.

For instance, MyClass::MyClass(float f, bool b=true){}.

Risk

If you do not declare a constructor explicit, compilers can perform unexpected and
often unintended type conversions to the class type using the constructor.

The implicit conversion can occur, for instance, when a function accepts a parameter of
the class type, but you call the function with an argument of a different type.

Fix

For better readability of your code and to prevent implicit conversions, in the constructor
declaration, place the explicit keyword before the constructor name.

If you want to convert from a variable of another type, explicitly call the class constructor
and pass the variable as argument.

Examples

Missing explicit Keyword

class MyClass {

3-211

3 Checks

public:

 MyClass(int val);

private:

 int val;

};

void func(MyClass);

void main() {

 MyClass MyClassObject(0);

 func(MyClassObject); // No conversion

 func(MyClass(0)); // Explicit conversion

 func(0); // Implicit conversion

}

In this example, the constructor of MyClass is not declared explicit. Therefore, the
call func(0) can perform an implicit conversion from int to MyClass.

Correction — Use explicit Keyword

One possible correction is to declare the constructor of MyClass as explicit. If an
operation in your code performs an implicit conversion, the compiler generates an error.
Therefore, using the explicit keyword, you detect unintended type conversions in the
compilation stage.

For instance, in function main below, if you add the statement func(0); that performs
implicit conversion, the code does not compile.

class MyClass {

public:

 explicit MyClass(int val);

private:

 int val;

};

void func(MyClass);

void main() {

 MyClass MyClassObject(0);

 func(MyClassObject); // No conversion

 func(MyClass(0)); // Explicit conversion

}

3-212

 Missing explicit keyword

Incorrect Argument Order Preventable Through explicit Keyword

class Month {

 int val;

public:

 Month(int m): val(m) {}

 ~Month() {}

};

class Day {

 int val;

public:

 Day(int d): val(d) {}

 ~Day() {}

};

class Year {

 int val;

public:

 Year(int y): val(y) {}

 ~Year() {}

};

class Date {

 Month mm;

 Day dd;

 Year yyyy;

public:

 Date(const Month & m, const Day & d, const Year & y):mm(m), dd(d), yyyy(y) {}

};

void main() {

 Date(20,1,2000); //Implicit conversion, wrong argument order undetected

}

In this example, the constructors for classes Month, Day and Year do not have an
explicit keyword. They allow implicit conversion from int variables to Month, Day
and Year variables.

When you create a Date variable and use an incorrect argument order for the Date
constructor, because of the implicit conversion, your code compiles. You might not detect
that you have switched the month value and the day value.

3-213

3 Checks

Correction — Use explicit Keyword

If you use the explicit keyword for the constructors of classes Month, Day and Year,
you cannot call the Date constructor with an incorrect argument order.

• If you call the Date constructor with int variables, your code does not compile
because the explicit keyword prevents implicit conversion from int variables.

• If you call the Date constructor with the arguments explicitly converted to Month,
Day and Year, and have the wrong argument order, your code does not compile
because of the argument type mismatch.

class Month {

 int val;

public:

 explicit Month(int m): val(m) {}

 ~Month() {}

};

class Day {

 int val;

public:

 explicit Day(int d): val(d) {}

 ~Day() {}

};

class Year {

 int val;

public:

 explicit Year(int y): val(y) {}

 ~Year() {}

};

class Date {

 Month mm;

 Day dd;

 Year yyyy;

public:

 Date(const Month & m, const Day & d, const Year & y):mm(m), dd(d), yyyy(y) {}

};

void main() {

 Date(Month(1),Day(20),Year(2000));

 // Date(20,1,2000); - Does not compile

 // Date(Day(20), Month(1), Year(2000)); - Does not compile

3-214

 Missing explicit keyword

}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: missing_explicit_keyword
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CERT C++ — OOP09-CPP

Introduced in R2015b

3-215

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3416

3 Checks

Missing lock
Unlock function without lock function

Description

Missing lock occurs when a task calls an unlock function before calling the
corresponding lock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task my_task calls a lock function my_lock, other tasks calling
my_lock must wait till my_task calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Missing lock

void begin_critical_section(void);

void end_critical_section(void);

int global_var;

void reset(void)

{

 begin_critical_section();

 global_var = 0;

 end_critical_section();

}

void my_task(void)

{

3-216

 Missing lock

 global_var += 1;

 end_critical_section();

}

In this example, to emulate multitasking behavior, you must specify the following
options:

Option Specification

Configure multitasking
manually on page 1-56
Entry points on page 1-57 my_task, reset

Starting procedure Ending procedureCritical section details on
page 1-64 begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop

 -entry-points my_task,reset

 -critical-section-begin begin_critical_section:cs1

 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset. my_task calls
end_critical_section before calling begin_critical_section.

Correction — Provide Lock

One possible correction is to call the lock function begin_critical_section before the
instructions in the critical section.

void begin_critical_section(void);

void end_critical_section(void);

int global_var;

void reset(void)

{

3-217

3 Checks

 begin_critical_section();

 global_var = 0;

 end_critical_section();

}

void my_task(void)

{

 begin_critical_section();

 global_var += 1;

 end_critical_section();

}

Lock in Condition

void begin_critical_section(void);

void end_critical_section(void);

int global_var;

void reset() {

 begin_critical_section();

 global_var=0;

 end_critical_section();

}

void my_task(void) {

 int index=0;

 volatile int numCycles;

 while(numCycles) {

 if(index%10==0) {

 begin_critical_section();

 global_var ++;

 }

 end_critical_section();

 index++;

 }

}

In this example, to emulate multitasking behavior, you must specify the following
options:

3-218

 Missing lock

Option Specification

Configure multitasking
manually on page 1-56
Entry points on page 1-57 my_task, reset

Starting procedure Ending procedureCritical section details on
page 1-64 begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop

 -entry-points my_task,reset

 -critical-section-begin begin_critical_section:cs1

 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset.

In the while loop, my_task leaves a critical section through the call
end_critical_section();. In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section begins through a call to
begin_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the
critical section does not begin. Therefore, a Missing lock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration
of the while loop, the unlock function end_critical_section is called again. A
Double unlock defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases
above are possible. Therefore, a Missing lock defect and a Double unlock defect
appear on the call end_critical_section.

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: bad_unlock
Impact: Medium

3-219

3 Checks

See Also

Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry points (-entry-
points) | Critical section details (-critical-section-begin -critical-section-
end) | Temporally exclusive tasks (-temporal-exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through standard library
function call | Deadlock | Destruction of locked mutex | Double lock | Double unlock |
Missing unlock

More About
• “Set Up Multitasking Analysis Manually”

External Websites
• CWE-832
• CERT C — CON01-C

Introduced in R2014b

3-220

https://cwe.mitre.org/data/definitions/832.html
https://www.securecoding.cert.org/confluence/display/c/CON01-C.+Acquire+and+release+synchronization+primitives+in+the+same+module%2C+at+the+same+level+of+abstraction

 Missing null in string array

Missing null in string array

String does not terminate with null character

Description

Missing null in string array occurs when a string does not have enough space to
terminate with a null character '\0'. This defect can cause various memory errors in
your code, so is important to fix it.

This defect applies only for projects in C.

Examples

Array size is too small

void countdown(int i)

{

 static char one[5] = "ONE";

 static char two[5] = "TWO";

 static char three[5] = "THREE";

}

The character array three has a size of 5 and 5 characters 'T', 'H', 'R', 'E', and 'E'.
There is no room for the null character at the end because three is only five bytes large.

Correction — Increase Array Size

One possible correction is to change the array size to allow for the five characters plus a
null character.

void countdown(int i)

{

 static char one[5] = "ONE";

 static char two[5] = "TWO";

 static char three[6] = "THREE";

}

3-221

3 Checks

Correction — Change Initialization Method

One possible correction is to initialize the string by leaving the array size blank. This
initialization method allocates enough memory for the five characters and a terminating-
null character.

void countdown(int i)

{

 static char one[5] = "ONE";

 static char two[5] = "TWO";

 static char three[] = "THREE";

}

Check Information
Group: Programming
Language: C
Default: On for handwritten code, off for generated code
Command-Line Syntax: missing_null_char
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-170: Improper Null Termination
• CERT C — STR11-C: Do not specify the bound of a character array initialized with

a string literal
• CERT C — STR31-C: Guarantee that storage for strings has sufficient space for

character data and the null terminator

Introduced in R2013b

3-222

http://cwe.mitre.org/data/definitions/170.html
https://www.securecoding.cert.org/confluence/display/c/STR11-C.+Do+not+specify+the+bound+of+a+character+array+initialized+with+a+string+literal
https://www.securecoding.cert.org/confluence/display/c/STR11-C.+Do+not+specify+the+bound+of+a+character+array+initialized+with+a+string+literal
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

 Missing unlock

Missing unlock
Lock function without unlock function

Description

Missing unlock occurs when:

• A task calls a lock function.
• The task ends without a call to an unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task, my_task, calls a lock function, my_lock, other tasks
calling my_lock must wait until my_task calls the corresponding unlock function.
Polyspace requires that both lock and unlock functions must have the form void
func(void).

To find this defect, before analysis, you must specify the multitasking options. On the
Configuration pane, select Multitasking.

Examples

Missing Unlock

void begin_critical_section(void);

void end_critical_section(void);

int global_var;

void reset()

{

 begin_critical_section();

 global_var = 0;

 end_critical_section();

}

3-223

3 Checks

void my_task(void)

{

 begin_critical_section();

 global_var += 1;

}

In this example, to emulate multitasking behavior, specify the following options:

Option Value

Configure multitasking
manually on page 1-56
Entry points on page 1-57 my_task, reset

Starting procedure Ending procedureCritical section details on
page 1-64 begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop

 -entry-points my_task,reset

 -critical-section-begin begin_critical_section:cs1

 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset. my_task enters a critical
section through the call begin_critical_section();. my_task ends without calling
end_critical_section.

Correction — Provide Unlock

One possible correction is to call the unlock function end_critical_section after the
instructions in the critical section.

void begin_critical_section(void);

void end_critical_section(void);

int global_var;

3-224

 Missing unlock

void reset(void)

{

 begin_critical_section();

 global_var = 0;

 end_critical_section();

}

void my_task(void)

{

 begin_critical_section();

 global_var += 1;

 end_critical_section();

}

Unlock in Condition

void begin_critical_section(void);

void end_critical_section(void);

int global_var;

void reset() {

 begin_critical_section();

 global_var=0;

 end_critical_section();

}

void my_task(void) {

 int index=0;

 volatile int numCycles;

 while(numCycles) {

 begin_critical_section();

 global_var ++;

 if(index%10==0) {

 global_var = 0;

 end_critical_section();

 }

 index++;

 }

}

3-225

3 Checks

In this example, to emulate multitasking behavior, specify the following options.

Option Specification

Configure multitasking
manually on page 1-56
Entry points on page 1-57 my_task, reset

Starting procedure Ending procedureCritical section details on
page 1-64 begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop

 -entry-points my_task,reset

 -critical-section-begin begin_critical_section:cs1

 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset.

In the while loop, my_task enters a critical section through the call
begin_critical_section();. In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section ends through a call to
end_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the
critical section does not end. Therefore, a Missing unlock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration
of the while loop, the lock function begin_critical_section is called again. A
Double lock defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases
above is possible. Therefore, a Missing unlock defect and a Double lock defect appear
on the call begin_critical_section.

Correction — Place Unlock Outside Condition

One possible correction is to call the unlock function end_critical_section outside
the if condition.

3-226

 Missing unlock

void begin_critical_section(void);

void end_critical_section(void);

int global_var;

void reset() {

 begin_critical_section();

 global_var=0;

 end_critical_section();

}

void my_task(void) {

 int index=0;

 volatile int numCycles;

 while(numCycles) {

 begin_critical_section();

 global_var ++;

 if(index%10==0) {

 global_var=0;

 }

 end_critical_section();

 index++;

 }

}

Correction — Place Unlock in Every Conditional Branch

Another possible correction is to call the unlock function end_critical_section in
every branches of the if condition.

void begin_critical_section(void);

void end_critical_section(void);

int global_var;

void reset() {

 begin_critical_section();

 global_var=0;

 end_critical_section();

}

3-227

3 Checks

void my_task(void) {

 int index=0;

 volatile int numCycles;

 while(numCycles) {

 begin_critical_section();

 global_var ++;

 if(index%10==0) {

 global_var=0;

 end_critical_section();

 }

 else

 end_critical_section();

 index++;

 }

}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: bad_lock
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry points (-entry-
points) | Critical section details (-critical-section-begin -critical-section-
end) | Temporally exclusive tasks (-temporal-exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through standard library
function call | Deadlock | Destruction of locked mutex | Double lock | Double unlock |
Missing lock

More About
• “Set Up Multitasking Analysis Manually”

3-228

 Missing unlock

External Websites
• CWE-667: Improper Locking
• CERT C — MEM12-C: Consider a goto chain when leaving a function on error when

using and releasing resources

Introduced in R2014b

3-229

https://cwe.mitre.org/data/definitions/667.html
https://www.securecoding.cert.org/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources
https://www.securecoding.cert.org/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources

3 Checks

Missing return statement
Function does not return value though return type is not void

Description

Missing return statement occurs when a function does not return a value along at
least one execution path. If the return type of the function is void, this error does not
occur.

Examples

Missing or invalid return statement error

int AddSquares(int n)

 {

 int i=0;

 int sum=0;

 if(n!=0)

 {

 for(i=1;i<=n;i++)

 {

 sum+=i^2;

 }

 return(sum);

 }

 }

/* Defect: No return value if n is not 0*/

If n is equal to 0, the code does not enter the if statement. Therefore, the function
AddSquares does not return a value if n is 0.

Correction — Place Return Statement on Every Execution Paths

One possible correction is to return a value in every branch of the if...else statement.

 int AddSquares(int n)

 {

3-230

 Missing return statement

 int i=0;

 int sum=0;

 if(n!=0)

 {

 for(i=1;i<=n;i++)

 {

 sum+=i^2;

 }

 return(sum);

 }

 /*Fix: Place a return statement on branches of if-else */

 else

 return 0;

 }

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: missing_return
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CERT C — MSC37-C: Ensure that control never reaches the end of a non-void

function

Introduced in R2013b

3-231

https://www.securecoding.cert.org/confluence/display/c/MSC37-C.+Ensure+that+control+never+reaches+the+end+of+a+non-void+function
https://www.securecoding.cert.org/confluence/display/c/MSC37-C.+Ensure+that+control+never+reaches+the+end+of+a+non-void+function

3 Checks

Missing virtual inheritance

A base class is inherited virtually and nonvirtually in the same hierarchy

Description

Missing virtual inheritance occurs when:

• A class is derived from multiple base classes, and some of those base classes are
themselves derived from a common base class.

For instance, a class Final is derived from two classes, Intermediate_left and
Intermediate_right. Both Intermediate_left and Intermediate_right are
derived from a common class, Base.

• At least one of the inheritances from the common base class is virtual and at least
one is not virtual.

For instance, the inheritance of Intermediate_right from Base is virtual. The
inheritance of Intermediate_left from Base is not virtual.

Risk

If this defect appears, multiple copies of the base class data members appear in the final
derived class object. To access the correct copy of the base class data member, you have
to qualify the member and method name appropriately in the final derived class. The
development is error-prone.

For instance, when the defect occurs, two copies of the base class data members appear
in an object of class Final. If you do not qualify method names appropriately in the class
Final, you can assign a value to a Base data member but not retrieve the same value.

• You assign the value using a Base method accessed through Intermediate_left.
Therefore, you assign the value to one copy of the Base member.

• You retrieve the value using a Base method accessed through
Intermediate_right. Therefore, you retrieve a different copy of the Base member.

3-232

 Missing virtual inheritance

Fix

Declare all the intermediate inheritances as virtual when a class is derived from
multiple base classes that are themselves derived from a common base class.

If you indeed want multiple copies of the Base data members as represented in the
intermediate derived classes, use aggregation instead of inheritance. For instance,
declare two objects of class Intermediate_left and Intermediate_right in the
Final class.

Examples

Missing Virtual Inheritance

#include <stdio.h>

class Base {

public:

 explicit Base(int i): m_b(i) {};

 virtual ~Base() {};

 virtual int get() const {

 return m_b;

 }

 virtual void set(int b) {

 m_b = b;

 }

private:

 int m_b;

};

class Intermediate_left: virtual public Base {

public:

 Intermediate_left():Base(0), m_d1(0) {};

private:

 int m_d1;

};

class Intermediate_right: public Base {

public:

 Intermediate_right():Base(0), m_d2(0) {};

private:

 int m_d2;

3-233

3 Checks

};

class Final: public Intermediate_left, Intermediate_right {

public:

 Final(): Base(0), Intermediate_left(), Intermediate_right() {};

 int get() const {

 return Intermediate_left::get();

 }

 void set(int b) {

 Intermediate_right::set(b);

 }

 int get2() const {

 return Intermediate_right::get();

 }

};

int main(int argc, char* argv[]) {

 Final d;

 int val = 12;

 d.set(val);

 int res = d.get();

 printf("d.get=%d\n",res); // Result: d.get=0

 printf("d.get2=%d\n",d.get2()); // Result: d.get2=12

 return res;

}

In this example, Final is derived from both Intermediate_left and
Intermediate_right. Intermediate_left is derived from Base in a non-virtual
manner and Intermediate_right is derived from Base in a virtual manner.
Therefore, two copies of the base class and the data member m_b are present in the final
derived class,

Both derived classes Intermediate_left and Intermediate_right do not override
the Base class methods get and set. However, Final overrides both methods. In the
overridden get method, it calls Base::get through Intermediate_left. In the
overridden set method, it calls Base::set through Intermediate_right.

Following the statement d.set(val), Intermediate_right’s copy of m_b is set to
12. However, Intermediate_left’s copy of m_b is still zero. Therefore, when you call
d.get(), you obtain a value zero.

Using the printf statements, you can see that you retrieve a value that is different from
the value that you set.

3-234

 Missing virtual inheritance

The defect appears in the final derived class definition and on the name of the class that
are derived virtually from the common base class. Following are some tips for navigating
in the source code:

• To find the definition of a class, on the Source pane, right-click the class name and
select Go To Definition.

• To navigate up the class hierarchy, first navigate to the intermediate class definition.
In the intermediate class definition, right-click a base class name and select Go To
Definition.

Correction — Make Both Inheritances Virtual

One possible correction is to declare both the inheritances from Base as virtual.

Even though the overridden get and set methods in Final still call Base::get and
Base::set through different classes, only one copy of m_b exists in Final.

#include <stdio.h>

class Base {

public:

 explicit Base(int i): m_b(i) {};

 virtual ~Base() {};

 virtual int get() const {

 return m_b;

 }

 virtual void set(int b) {

 m_b = b;

 }

private:

 int m_b;

};

class Intermediate_left: virtual public Base {

public:

 Intermediate_left():Base(0), m_d1(0) {};

private:

 int m_d1;

};

class Intermediate_right: virtual public Base {

public:

 Intermediate_right():Base(0), m_d2(0) {};

private:

 int m_d2;

3-235

3 Checks

};

class Final: public Intermediate_left, Intermediate_right {

public:

 Final(): Base(0), Intermediate_left(), Intermediate_right() {};

 int get() const {

 return Intermediate_left::get();

 }

 void set(int b) {

 Intermediate_right::set(b);

 }

 int get2() const {

 return Intermediate_right::get();

 }

};

int main(int argc, char* argv[]) {

 Final d;

 int val = 12;

 d.set(val);

 int res = d.get();

 printf("d.get=%d\n",res); // Result: d.get=12

 printf("d.get2=%d\n",d.get2()); // Result: d.get2=12

 return res;

}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: missing_virtual_inheritance
Impact: Medium

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

3-236

 Missing virtual inheritance

Introduced in R2015b

3-237

3 Checks

Modification of internal buffer returned from
nonreentrant standard function

Function attempts to modify internal buffer returned from a nonreentrant standard
function

Description

Modification of internal buffer returned from nonreentrant standard function
occurs when the following happens:

• A nonreentrant standard function returns a pointer.
• You attempt to write to the memory location that the pointer points to.

Nonreentrant standard functions that return a non const-qualified pointer to an
internal buffer include getenv, getlogin, crypt, setlocale, localeconv, strerror
and others.

Risk

Modifying the internal buffer that a nonreentrant standard function returns can cause
the following issues:

• It is possible that the modification does not succeed or alters other internal data.

For instance, getenv returns a pointer to an environment variable value. If you
modify this value, you alter the environment of the process and corrupt other internal
data.

• Even if the modification succeeds, it is possible that a subsequent call to the same
standard function does not return your modified value.

For instance, you modify the environment variable value that getenv returns.
If another process, thread, or signal handler calls setenv, the modified value is
overwritten. Therefore, a subsequent call to getenv does not return your modified
value.

3-238

 Modification of internal buffer returned from nonreentrant standard function

Fix

Avoid modifying the internal buffer using the pointer returned from the function.

Examples

Modification of getenv Return Value

#include <stdlib.h>

#include <string.h>

void printstr(const char*);

void func() {

 char* env = getenv("LANGUAGE");

 if (env != NULL) {

 strncpy(env, "C", 1);

 printstr(env);

 }

}

In this example, the first argument of strncpy is the return value from a nonreentrant
standard function getenv. The behavior can be undefined because strncpy modifies
this argument.

Correction – Copy Return Value of getenv and Modify Copy

One possible solution is to copy the return value of getenv and pass the copy to the
strncpy function.

#include <stdlib.h>

#include <string.h>

enum {

 SIZE20 = 20

};

void printstr(const char*);

void func() {

 char* env = getenv("LANGUAGE");

 if (env != NULL) {

3-239

3 Checks

 char env_cp[SIZE20];

 strncpy(env_cp, env, SIZE20);

 strncpy(env_cp, "C", 1);

 printstr(env_cp);

 }

}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: write_internal_buffer_returned_from_std_func
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE–573: Improper Following of Specification by Caller
• CWE–628: Function Call with Incorrectly Specified Arguments
• CERT C — ENV30-C: Do not modify the object referenced by the return value of

certain functions
• CERT C — STR06-C: Do not assume strtok() leaves the parse string unchanged

Introduced in R2015b

3-240

http://cwe.mitre.org/data/definitions/573.html
http://cwe.mitre.org/data/definitions/628.html
https://www.securecoding.cert.org/confluence/display/c/ENV30-C.+Do+not+modify+the+object+referenced+by+the+return+value+of+certain+functions
https://www.securecoding.cert.org/confluence/display/c/ENV30-C.+Do+not+modify+the+object+referenced+by+the+return+value+of+certain+functions
https://www.securecoding.cert.org/confluence/display/c/STR06-C.+Do+not+assume+that+strtok%28%29+leaves+the+parse+string+unchanged

 Non-initialized pointer

Non-initialized pointer
Pointer not initialized before dereference

Description

Non-initialized pointer occurs when a pointer is not assigned an address before
dereference.

Examples

Non-initialized pointer error

#include <stdlib.h>

int* assign_pointer(int* prev)

{

 int j = 42;

 int* pi;

 if (prev == NULL)

 {

 pi = (int*)malloc(sizeof(int));

 if (pi == NULL) return NULL;

 }

 *pi = j;

 /* Defect: Writing to uninitialized pointer */

 return pi;

}

If prev is not NULL, the pointer pi is not assigned an address. However, pi is
dereferenced on every execution paths, irrespective of whether prev is NULL or not.

Correction — Initialize Pointer on Every Execution Path

One possible correction is to assign an address to pi when prev is not NULL.

#include <stdlib.h>

3-241

3 Checks

int* assign_pointer(int* prev)

{

 int j = 42;

 int* pi;

 if (prev == NULL)

 {

 pi = (int*)malloc(sizeof(int));

 if (pi == NULL) return NULL;

 }

 /* Fix: Initialize pi in branches of if statement */

 else

 pi = prev;

 *pi = j;

 return pi;

}

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: non_init_ptr
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Non-initialized variable

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

3-242

 Non-initialized pointer

External Websites
• CWE-456: Missing Initialization of a Variable
• CWE-457: Use of Uninitialized Variable
• CWE-824: Access of Uninitialized Pointer
• CWE-908: Use of Uninitialized Resource
• CERT C — EXP33-C: Do not read uninitialized memory

Introduced in R2013b

3-243

http://cwe.mitre.org/data/definitions/456.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/824.html
http://cwe.mitre.org/data/definitions/908.html
https://www.securecoding.cert.org/confluence/display/c/EXP33-C.+Do+not+read+uninitialized+memory

3 Checks

Non-initialized variable
Variable not initialized before use

Description

Non-initialized variable occurs when a variable is not initialized before its value is
read.

Examples

Non-initialized variable error

int get_sensor_value(void)

{

 extern int getsensor(void);

 int command;

 int val;

 command = getsensor();

 if (command == 2)

 {

 val = getsensor();

 }

 return val;

 /* Defect: val does not have a value if command is not 2 */

}

If command is not 2, the variable val is unassigned. In this case, the return value of
function get_sensor_value is undetermined.

Correction — Initialize During Declaration

One possible correction is to initialize val during declaration so that only its value is
dependant on different execution paths.

int get_sensor_value(void)

{

3-244

 Non-initialized variable

 extern int getsensor(void);

 int command;

 /* Fix: Initialize val */

 int val=0;

 command = getsensor();

 if (command == 2)

 {

 val = getsensor();

 }

 return val;

 }

val is assigned an initial value of 0. When command is not equal to 2, the function
get_sensor_value returns this value.

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: non_init_var
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Non-initialized pointer

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-456: Missing Initialization of a Variable

3-245

http://cwe.mitre.org/data/definitions/456.html

3 Checks

• CWE-457: Use of Uninitialized Variable
• CWE-908: Use of Uninitialized Resource
• CERT C — EXP33-C: Do not read uninitialized memory
• CERT C — MSC39-C: Do not call va_arg() on a va_list that has an indeterminate

value

Introduced in R2013b

3-246

http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/908.html
https://www.securecoding.cert.org/confluence/display/c/EXP33-C.+Do+not+read+uninitialized+memory
https://www.securecoding.cert.org/confluence/display/c/MSC39-C.+Do+not+call+va_arg%28%29+on+a+va_list+that+has+an+indeterminate+value
https://www.securecoding.cert.org/confluence/display/c/MSC39-C.+Do+not+call+va_arg%28%29+on+a+va_list+that+has+an+indeterminate+value

 Null pointer

Null pointer
NULL pointer dereferenced

Description

Null pointer occurs when you use a pointer with a value of NULL as if it points to a valid
memory location.

Examples

Null pointer error

#include <stdlib.h>

int FindMax(int *arr, int Size)

{

 int* p=NULL;

 *p=arr[0];

 /* Defect: Null pointer dereference */

 for(int i=0;i<Size;i++)

 {

 if(arr[i] > (*p))

 *p=arr[i];

 }

 return *p;

}

The pointer p is initialized with value of NULL. However, when the value arr[0] is
written to *p, p is assumed to point to a valid memory location.

Correction — Assign Address to Null Pointer Before Dereference

One possible correction is to initialize p with a valid memory address before dereference.

#include <stdlib.h>

3-247

3 Checks

int FindMax(int *arr, int Size)

{

 /* Fix: Assign address to null pointer */

 int* p=&arr[0];

 for(int i=0;i<Size;i++)

 {

 if(arr[i] > (*p))

 *p=arr[i];

 }

 return *p;

}

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: null_ptr
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Arithmetic operation with NULL pointer | Non-initialized pointer

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-476: NULL Pointer Dereference
• CERT C — EXP34-C: Do not dereference null pointers

3-248

http://cwe.mitre.org/data/definitions/476.html
https://www.securecoding.cert.org/confluence/display/c/EXP34-C.+Do+not+dereference+null+pointers

 Null pointer

Introduced in R2013b

3-249

3 Checks

Object slicing
Derived class object passed by value to function with base class parameter

Description
Object slicing occurs when you pass a derived class object by value to a function, but
the function expects a base class object as parameter.

Risk

If you pass a derived class object by value to a function, you expect the derived class copy
constructor to be called. If the function expects a base class object as parameter:

1 The base class copy constructor is called.
2 In the function body, the parameter is considered as a base class object.

In C++, virtual methods of a class are resolved at run time according to the actual type
of the object. Because of object slicing, an incorrect implementation of a virtual method
can be called. For instance, the base class contains a virtual method and the derived
class contains an implementation of that method. When you call the virtual method
from the function body, the base class method is called, even though you pass a derived
class object to the function.

Fix

One possible fix is to pass the object by reference or pointer. Passing by reference or
pointer does not cause invocation of copy constructors. If you do not want the object to be
modified, use a const qualifier with your function parameter.

Another possible fix is to overload the function with another function that accepts the
derived class object as parameter.

Examples

Function Call Causing Object Slicing

#include <iostream>

3-250

 Object slicing

class Base {

public:

 explicit Base(int b) {

 _b = b;

 }

 virtual ~Base() {}

 virtual int update() const;

protected:

 int _b;

};

class Derived: public Base {

public:

 explicit Derived(int b):Base(b) {}

 int update() const;

};

//Class methods definition

int Base::update() const {

 return (_b + 1);

}

int Derived::update() const {

 return (_b -1);

}

//Other function definitions

void funcPassByValue(const Base bObj) {

 std::cout << "Updated _b=" << bObj.update() << std::endl;

}

int main() {

 Derived dObj(0);

 funcPassByValue(dObj); //Function call slices object

 return 0;

 }

In this example, the call funcPassByValue(dObj) results in the output Updated _b=1
instead of the expected Updated _b=-1. Because funcPassByValue expects a Base
object parameter, it calls the Base class copy constructor.

3-251

3 Checks

Therefore, even though you pass the Derived object dObj, the function
funcPassByValue treats its parameter b as a Base object. It calls Base::update()
instead of Derived::update().

Correction — Pass Object by Reference or Pointer

One possible correction is to pass the Derived object dObj by reference or by pointer.
In the following, corrected example, funcPassByReference and funcPassByPointer
have the same objective as funcPassByValue in the preceding example. However,
funcPassByReference expects a reference to a Base object and funcPassByPointer
expects a pointer to a Base object.

Passing the Derived object d by a pointer or by reference does not slice the object. The
calls funcPassByReference(dObj) and funcPassByPointer(&dObj) produce the
expected result Updated _b=-1.

#include <iostream>

class Base {

public:

 explicit Base(int b) {

 _b = b;

 }

 virtual ~Base() {}

 virtual int update() const;

protected:

 int _b;

};

class Derived: public Base {

public:

 explicit Derived(int b):Base(b) {}

 int update() const;

};

//Class methods definition

int Base::update() const {

 return (_b + 1);

}

int Derived::update() const {

3-252

 Object slicing

 return (_b -1);

}

//Other function definitions

void funcPassByReference(const Base& bRef) {

 std::cout << "Updated _b=" << bRef.update() << std::endl;

}

void funcPassByPointer(const Base* bPtr) {

 std::cout << "Updated _b=" << bPtr->update() << std::endl;

}

int main() {

 Derived dObj(0);

 funcPassByReference(dObj); //Function call does not slice object

 funcPassByPointer(&dObj); //Function call does not slice object

 return 0;

 }

Note: If you pass by value, because a copy of the object is made, the original object is not
modified. Passing by reference or by pointer makes the object vulnerable to modification.
If you are concerned about your original object being modified, add a const qualifier to
your function parameter, as in the preceding example.

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: object_slicing
Impact: High

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

3-253

3 Checks

Introduced in R2015b

3-254

 Overlapping assignment

Overlapping assignment

Memory overlap between left and right sides of an assignment

Description

Overlapping assignment occurs when there is a memory overlap between the left and
right sides of an assignment. For instance, a variable is assigned to itself or one member
of a union is assigned to another.

Risk

If the left and right sides of an assignment have memory overlap, the behavior is either
redundant or undefined. For instance:

• Self-assignment such as x=(int)(long)x; is redundant unless x is volatile-
qualified.

• Assignment of one union member to another causes undefined behavior.

For instance, in the following code:

• The result of the assignment u1.a = u1.b is undefined because u1.b is not
initialized.

• The result of the assignment u2.b = u2.a depends on the alignment and
endianness of the implementation. It is not defined by C standards.

union {

 char a;

 int b;

}u1={'a'}, u2={'a'}; //'u1.a' and 'u2.a' are initialized

u1.a = u1.b;

u2.b = u2.a;

Fix

Avoid assignment between two variables that have overlapping memory.

3-255

3 Checks

Examples

Assignment of Union Members

#include <string.h>

union Data {

 int i;

 float f;

};

int main() {

 union Data data;

 data.i = 0;

 data.f = data.i;

 return 0;

}

In this example, the variables data.i and data.f are part of the same union and are
stored in the same location. Therefore, part of their memory storage overlaps.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: overlapping_assign
Impact: Medium

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Copy of overlapping memory

More About
• “Navigate to Root Cause of Defect”

3-256

 Overlapping assignment

• “Review and Fix Results”

External Websites
• CWE-665: Improper Initialization

Introduced in R2015b

3-257

http://cwe.mitre.org/data/definitions/665.html

3 Checks

Partial override of overloaded virtual functions

Class overrides fraction of inherited virtual functions with a given name

Description

Partial override of overloaded virtual functions occurs when:

• A base class has multiple virtual methods with the same name but different
signatures (overloading).

• A class derived from the base class overrides at least one of those virtual methods,
but not all of them.

Risk

The virtual methods that the derived class does not override are hidden. You cannot
call those methods using an object of the derived class.

Fix

See if the overloads in the base class are required. If they are needed, possible solutions
include:

• In your derived class, if you override one virtual method, override all virtual
methods from the base class with the same name as that method.

• Otherwise, add the line using Base_class_name::method_name to the derived
class declaration. In this way, you can call the base class methods using an object of
the derived class.

Examples

Partial Override

class Base {

3-258

 Partial override of overloaded virtual functions

public:

 explicit Base(int b);

 virtual ~Base() {};

 virtual void set() {

 _b = (int)0;

 };

 virtual void set(short i) {

 _b = (int)i;

 };

 virtual void set(int i) {

 _b = (int)i;

 };

 virtual void set(long i) {

 _b = (int)i;

 };

 virtual void set(float i) {

 _b = (int)i;

 };

 virtual void set(double i) {

 _b = (int)i;

 };

private:

 int _b;

};

class Derived: public Base {

 public:

 Derived(int b, int d): Base(b), _d(d) {};

 void set(int i) { Base::set(i); _d = (int)i; };

 private:

 int _d;

};

In this example, the class Derived overrides the function set that takes an int
argument. It does not override other functions that have the same name set but take
arguments of other types.

The defect appears on the derived class name in the derived class definition. To find
which base class method is overridden:

1 Navigate to the base class definition. On the Source pane, right-click the base class
name and select Go To Definition.

2 In the base class definition, identify the method that has the same name and
signature as a derived class method name.

3-259

3 Checks

Correction — Unhide Base Class Method

One possible correction is add the line using Base::set to the Derived class
declaration.

class Base {

public:

 explicit Base(int b);

 virtual ~Base() {};

 virtual void set() {

 _b = (int)0;

 };

 virtual void set(short i) {

 _b = (int)i;

 };

 virtual void set(int i) {

 _b = (int)i;

 };

 virtual void set(long i) {

 _b = (int)i;

 };

 virtual void set(float i) {

 _b = (int)i;

 };

 virtual void set(double i) {

 _b = (int)i;

 };

private:

 int _b;

};

class Derived: public Base {

 public:

 Derived(int b, int d): Base(b), _d(d) {};

 using Base::set;

 void set(int i) { Base::set(i); _d = (int)i; };

 private:

 int _d;

};

Result Information
Group: Object oriented
Language: C++

3-260

 Partial override of overloaded virtual functions

Default: On
Command-Line Syntax: partial_override
Impact: Medium

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2015b

3-261

3 Checks

Pointer access out of bounds
Pointer dereferenced outside its bounds

Description

Pointer access out of bounds occurs when a pointer is dereferenced outside its
bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer.
You cannot access memory beyond that block using the pointer.

Examples

Pointer access out of bounds error

int* Initialize(void)

{

 int arr[10];

 int *ptr=arr;

 for (int i=0; i<=9;i++)

 {

 ptr++;

 *ptr=i;

 /* Defect: ptr out of bounds for i=9 */

 }

 return(arr);

}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int).
In the for-loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points
outside the memory block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)

3-262

 Pointer access out of bounds

{

 int arr[10];

 int *ptr=arr;

 for (int i=0; i<=9;i++)

 {

 /* Fix: Dereference pointer before increment */

 *ptr=i;

 ptr++;

 }

 return(arr);

}

After the last increment, even though ptr points outside the memory block assigned to
it, it is not dereferenced more.

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: out_bound_ptr
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Array access out of bounds

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-119: Improper Restriction of Operations within the Bounds of a Memory

Buffer

3-263

http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/119.html

3 Checks

• CWE-188: Reliance on Data/Memory Layout
• CWE-466: Return of Pointer Value Outside of Expected Range
• CWE-823: Use of Out-of-range Pointer Offset
• CERT C — API02-C: Functions that read or write to or from an array should take

an argument to specify the source or target size
• CERT C — ARR30-C: Do not form or use out-of-bounds pointers or array subscripts
• CERT C — ARR38-C: Guarantee that library functions do not form invalid pointers
• CERT C — ARR39-C: Do not add or subtract a scaled integer to a pointer
• CERT C — EXP08-C: Ensure pointer arithmetic is used correctly
• CERT C — EXP39-C: Do not access a variable through a pointer of an incompatible

type
• CERT C — MEM35-C: Allocate sufficient memory for an object
• CERT C — STR31-C: Guarantee that storage for strings has sufficient space for

character data and null terminator

Introduced in R2013b

3-264

http://cwe.mitre.org/data/definitions/188.html
http://cwe.mitre.org/data/definitions/466.html
http://cwe.mitre.org/data/definitions/823.html
https://www.securecoding.cert.org/confluence/display/c/API02-C.+Functions+that+read+or+write+to+or+from+an+array+should+take+an+argument+to+specify+the+source+or+target+size
https://www.securecoding.cert.org/confluence/display/c/API02-C.+Functions+that+read+or+write+to+or+from+an+array+should+take+an+argument+to+specify+the+source+or+target+size
https://www.securecoding.cert.org/confluence/display/c/ARR30-C.+Do+not+form+or+use+out-of-bounds+pointers+or+array+subscripts
https://www.securecoding.cert.org/confluence/display/c/ARR38-C.+Guarantee+that+library+functions+do+not+form+invalid+pointers
https://www.securecoding.cert.org/confluence/display/c/ARR39-C.+Do+not+add+or+subtract+a+scaled+integer+to+a+pointer
https://www.securecoding.cert.org/confluence/display/c/EXP08-C.+Ensure+pointer+arithmetic+is+used+correctly
https://www.securecoding.cert.org/confluence/display/c/EXP39-C.+Do+not+access+a+variable+through+a+pointer+of+an+incompatible+type
https://www.securecoding.cert.org/confluence/display/c/EXP39-C.+Do+not+access+a+variable+through+a+pointer+of+an+incompatible+type
https://www.securecoding.cert.org/confluence/display/c/MEM35-C.+Allocate+sufficient+memory+for+an+object
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

 Pointer or reference to stack variable leaving scope

Pointer or reference to stack variable leaving scope

Pointer to local variable leaves the variable scope

Description

Pointer or reference to stack variable leaving scope occurs when a pointer or
reference to a local variable leaves the scope of the variable. For instance:

• A function returns a pointer to a local variable.
• A function performs the assignment globPtr = &locVar. globPtr is a global

pointer variable and locVar is a local variable.
• A function performs the assignment *paramPtr = &locVar. paramPtr is a function

parameter that is, for instance, an int** pointer and locVar is a local int variable.
• A C++ method performs the assignment memPtr = &locVar. memPtr is a pointer

data member of the class the method belongs to. locVar is a variable local to the
method.

The defect applies to memory allocated using the alloca function. The defect does not
apply to static, local variables.

Risk

Local variables are allocated an address on the stack. Once the scope of a local variable
ends, this address is available for reuse. Using this address to access the local variable
value outside the variable scope can cause unexpected behavior.

If a pointer to a local variable leaves the scope of the variable, Polyspace Bug Finder
highlights the defect. The defect appears even if you do not use the address stored in the
pointer. For maintainable code, it is a good practice to not allow the pointer to leave the
variable scope. Even if you do not use the address in the pointer now, someone else using
your function can use the address, causing undefined behavior.

Fix

Do not allow a pointer or reference to a local variable to leave the variable scope.

3-265

3 Checks

Examples

Pointer to Local Variable Returned from Function

void func2(int *ptr) {

 *ptr = 0;

}

int* func1(void) {

 int ret = 0;

 return &ret ;

}

void main(void) {

 int* ptr = func1() ;

 func2(ptr) ;

}

In this example, func1 returns a pointer to local variable ret.

In main, ptr points to the address of the local variable. When ptr is accessed in func2,
the access is illegal because the scope of ret is limited to func1,

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: local_addr_escape
Impact: High

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE–562: Return of Stack Variable Address

3-266

http://cwe.mitre.org/data/definitions/562.html

 Pointer or reference to stack variable leaving scope

• CERT C — DCL30-C: Declare objects with appropriate storage durations

Introduced in R2015b

3-267

https://www.securecoding.cert.org/confluence/display/c/DCL30-C.+Declare+objects+with+appropriate+storage+durations

3 Checks

Pointer to non-initialized value converted to const
pointer

Pointer to constant assigned address that does not contain a value

Description

Pointer to non initialized value converted to const pointer occurs when a pointer
to a constant is assigned an address that does not yet contain a value.

Examples

Pointer to non initialized value converted to const pointer error

#include<stdio.h>

void Display_Parity()

 {

 int num,parity;

 const int* num_ptr = #

 /* Defect: Address &num does not store a value */

 printf("Enter a number\n:");

 scanf("%d",&num);

 parity=((*num_ptr)%2);

 if(parity==0)

 printf("The number is even.");

 else

 printf("The number is odd.");

 }

num_ptr is declared as a pointer to a constant. However the variable num does not
contain a value when num_ptr is assigned the address &num.

3-268

 Pointer to non-initialized value converted to const pointer

Correction — Store Value in Address Before Assignment to Pointer

One possible correction is to obtain the value of num from the user before &num is
assigned to num_ptr.

#include<stdio.h>

void Display_Parity()

 {

 int num,parity;

 const int* num_ptr;

 printf("Enter a number\n:");

 scanf("%d",&num);

 /* Fix: Assign &num to pointer after it receives a value */

 num_ptr=#

 parity=((*num_ptr)%2);

 if(parity==0)

 printf("The number is even.");

 else

 printf("The number is odd.");

 }

The scanf statement stores a value in &num. Once the value is stored, it is legitimate to
assign &num to num_ptr.

Check Information
Group: Data flow
Language: C | C++
Default: Off
Command-Line Syntax: non_init_ptr_conv
Impact: Medium

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”

3-269

3 Checks

• “Review and Fix Results”

Introduced in R2013b

3-270

 Partially accessed array

Partially accessed array
Array partly read or written before end of scope

Description

Partially accessed array occurs when an array is partially read or written before
the end of array scope. For arrays local to a function, the end of scope occurs when the
function ends.

Examples

Partially accessed array error

int Calc_Sum(void)

{

 int tab[5]={0,1,2,3,4},sum=0;

 /* Defect: tab[4] is not read */

 for (int i=0; i<4;i++) sum+=tab[i];

 return(sum);

 }

The array tab is only partially read before end of function Calc_Sum. While calculating
sum, tab[4] is not included.

Correction — Access Every Array Element

One possible correction is to read every element in the array tab.

int Calc_Sum(void)

{

 int tab[5]={0,1,2,3,4},sum=0;

 /* Fix: Include tab[4] in calculating sum */

3-271

3 Checks

 for (int i=0; i<5;i++) sum+=tab[i];

 return(sum);

 }

Check Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: partially_accessed_array
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2013b

3-272

 Possible misuse of sizeof

Possible misuse of sizeof
Use of sizeof operator can cause unintended results

Description

Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly
unintended results from the use of sizeof operator. For instance:

• You use the sizeof operator on an array parameter name, expecting the array size.
However, the array parameter name by itself is a pointer. The sizeof operator
returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However,
the operator returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect
because you used the sizeof operator earlier with possibly incorrect expectations.
For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an
incorrect use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the
not the number of wide characters but a size in bytes obtained by using the
sizeof operator. For instance, you use wcsncpy(destination, source,
sizeof(destination) - 1) instead of wcsncpy(destination, source,
(sizeof(desintation)/sizeof(wchar_t)) – 1).

Risk

Incorrect use of the sizeof operator can cause the following issues:

• If you expect the sizeof operator to return array size and use the return value to
constrain a loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is
smaller than what you require. Insufficient buffer can lead to resultant weaknesses
such as buffer overflows.

• If you use the return value of sizeof operator incorrectly in a function call, the
function does not behave as you expect.

3-273

3 Checks

Fix

Possible fixes are:

• Do not use the sizeof operator on an array parameter name or array element to
determine array size.

The best practice is to pass the array size as a separate function parameter and use
that parameter in the function body.

• Use the sizeof operator carefully to determine the number argument of functions
such as strncmp or wcsncpy. For instance, for wide string functions such as
wcsncpy, use the number of wide characters as argument instead of the number of
bytes.

Examples

sizeof Used Incorrectly to Determine Array Size

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {

 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {

 a[i] = i + 1;

 }

}

In this example, sizeof(a) returns the size of the pointer a and not the array size.

Correction — Determine Array Size in Another Way

One possible correction is to use another means to determine the array size.

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {

 int i;

 for (i = 0; i < MAX_SIZE; i++) {

 a[i] = i + 1;

3-274

 Possible misuse of sizeof

 }

}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: sizeof_misuse
Impact: High

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE–467: Use of sizeof() on a Pointer Type
• CERT C — ARR00-C: Understand how arrays work
• CERT C — ARR01-C: Do not apply the sizeof operator to a pointer when taking the

size of an array
• CERT C — ARR38-C: Guarantee that library functions do not form invalid pointers
• CERT C — ARR39-C: Do not add or subtract a scaled integer to a pointer
• Linux man page for strncmp
• Linux man page for wcsncpy

Introduced in R2015b

3-275

http://cwe.mitre.org/data/definitions/467.html
https://www.securecoding.cert.org/confluence/display/c/ARR00-C.+Understand+how+arrays+work
https://www.securecoding.cert.org/confluence/display/c/ARR01-C.+Do+not+apply+the+sizeof+operator+to+a+pointer+when+taking+the+size+of+an+array
https://www.securecoding.cert.org/confluence/display/c/ARR01-C.+Do+not+apply+the+sizeof+operator+to+a+pointer+when+taking+the+size+of+an+array
https://www.securecoding.cert.org/confluence/display/c/ARR38-C.+Guarantee+that+library+functions+do+not+form+invalid+pointers
https://www.securecoding.cert.org/confluence/display/c/ARR39-C.+Do+not+add+or+subtract+a+scaled+integer+to+a+pointer
http://man7.org/linux/man-pages/man3/strcmp.3.html
http://man7.org/linux/man-pages/man3/strcmp.3.html

3 Checks

Possibly unintended evaluation of expression
because of operator precedence rules

Operator precedence rules cause unexpected evaluation order in arithmetic expression

Description

Possibly unintended evaluation of expression because of operator precedence
rules occurs when an arithmetic expression result is possibly unintended because
operator precedence rules dictate an evaluation order that you do not expect.

The defect highlights expressions of the form x op_1 y op_2 z. Here, op_1-op_2 are
operator combinations that commonly induce this error. For instance, (x == y | z).

Risk

The defect can cause the following issues:

• If you or another code reviewer reviews the code, the intended order of evaluation is
not immediately clear.

• It is possible that the result of the evaluation does not meet your expectations. For
instance:

• In the operation *p++, it is possible that you expect the dereferenced value to be
incremented. However, the pointer p is incremented before the dereference.

• In the operation (x == y | z), it is possible that you expect x to be compared
with y | z. However, the == operation happens before the | operation.

Fix

See if the order of evaluation is what you intend. If not, apply parentheses to implement
the evaluation order that you want.

For better readability of your code, it is good practice to apply parenthesis to implement
an evaluation order even when operator precedence rules impose that order.

3-276

 Possibly unintended evaluation of expression because of operator precedence rules

Examples

Expressions with Possibly Unintended Evaluation Order

int test(int a, int b, int c) {

 return(a & b == c);

}

In this example, the == operation happens first, followed by the & operation. If you
intended the reverse order of operations, the result is not what you expect.

Correction — Parenthesis For Intended Order

One possible correction is to apply parenthesis to implement the intended evaluation
order.

int test(int a, int b, int c) {

 return((a & b) == c);

}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: operator_precedence
Impact: High

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• C++ Operator Precedence

3-277

http://en.cppreference.com/w/cpp/language/operator_precedence

3 Checks

• CWE–783
• CERT C – EXP00-C
• CERT C – EXP13-C
• CERT C++ – EXP00-CPP

Introduced in R2015b

3-278

http://cwe.mitre.org/data/definitions/783.html
https://www.securecoding.cert.org/confluence/x/_wI
https://www.securecoding.cert.org/confluence/x/LoFCAQ
https://www.securecoding.cert.org/confluence/x/VoAyAQ

 Resource leak

Resource leak
File stream not closed before FILE pointer scope ends or pointer is reassigned

Description

Resource leak occurs when you open a file stream by using a FILE pointer but do not
close it before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk

If you do not release file handles explicitly as soon as possible, a failure can occur due to
exhaustion of resources.

Fix

Close a FILE pointer before the end of its scope, or before you assign the pointer to
another stream.

Examples

FILE Pointer Not Released Before End of Scope

#include <stdio.h>

void func1(void) {

 FILE *fp1;

 fp1 = fopen ("data1.txt", "w");

 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");

 fprintf (fp1, "!");

 fclose (fp1);

}

3-279

3 Checks

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is
explicitly dissociated from the file stream of data1.txt, it is used to access another file
data2.txt.

Correction — Release FILE Pointer

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

#include <stdio.h>

void func1(void) {

 FILE *fp1;

 fp1 = fopen ("data1.txt", "w");

 fprintf (fp1, "*");

 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");

 fprintf (fp1, "!");

 fclose (fp1);

}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: resource_leak
Impact: High

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-772: Missing Release of Resource after Effective Lifetime

3-280

http://cwe.mitre.org/data/definitions/772.html

 Resource leak

• CERT C — MEM12-C: Consider a goto chain when leaving a function on error when
using and releasing resources

• CERT C — FIO42-C: Close files when they are no longer needed

Introduced in R2015b

3-281

https://www.securecoding.cert.org/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources
https://www.securecoding.cert.org/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources
https://www.securecoding.cert.org/confluence/display/c/FIO42-C.+Close+files+when+they+are+no+longer+needed

3 Checks

Return of non const handle to encapsulated data
member
Method returns pointer or reference to internal member of object

Description

Return of non-const handle to encapsulated data member occurs when:

• A class method returns a handle to a data member. Handles include pointers and
references.

• The method is more accessible than the data member. For instance, the method has
access specifier public, but the data member is private or protected.

Risk

The access specifier determines the accessibility of a class member. For instance, a class
member declared with the private access specifier cannot be accessed outside a class.
Therefore, nonmember, nonfriend functions cannot modify the member.

When a class method returns a handle to a less accessible data member, the member
accessibility changes. For instance, if a public method returns a pointer to a private
data member, the data member is effectively not private anymore. A nonmember,
nonfriend function calling the public method can use the returned pointer to view and
modify the data member.

Also, if you assign the pointer to a data member of an object to another pointer, when you
delete the object, the second pointer can be left dangling. The second pointer points to the
part of an object that does not exist anymore.

Fix

One possible fix is to avoid returning a handle to a data member from a class method.
Return a data member by value so that a copy of the member is returned. Modifying the
copy does not change the data member.

If you must return a handle, use a const qualifier with the method return type so that
the handle allows viewing, but not modifying, the data member.

3-282

 Return of non const handle to encapsulated data member

Examples

Return of Pointer to private Data Member

#include <string>

#define NUM_RECORDS 100

struct Date {

 int dd;

 int mm;

 int yyyy;

};

struct Period {

 Date startDate;

 Date endDate;

};

class DataBaseEntry {

private:

 std::string employeeName;

 Period employmentPeriod;

public:

 Period* getPeriod(void);

};

Period* DataBaseEntry::getPeriod(void) {

 return &employmentPeriod;

}

void use(Period*);

void reset(Period*);

int main() {

 DataBaseEntry dataBase[NUM_RECORDS];

 Period* tempPeriod;

 for(int i=0;i < NUM_RECORDS;i++) {

 tempPeriod = dataBase[i].getPeriod();

 use(tempPeriod);

 reset(tempPeriod);

 }

3-283

3 Checks

 return 0;

}

void reset(Period* aPeriod) {

 aPeriod->startDate.dd = 1;

 aPeriod->startDate.mm = 1;

 aPeriod->startDate.yyyy = 2000;

}

In this example, employmentPeriod is private to the class DataBaseEntry. It is
therefore immune from modification by nonmember, nonfriend functions. However,
returning a pointer to employmentPeriod breaks this encapsulation. For instance, the
nonmember function reset modifies the member startDate of employmentPeriod.

Correction: Return Member by Value

One possible correction is to return the data member employmentPeriod by value
instead of pointer. Modifying the return value does not change the data member because
the return value is a copy of the data member.

#include <string>

#define NUM_RECORDS 100

struct Date {

 int dd;

 int mm;

 int yyyy;

};

struct Period {

 Date startDate;

 Date endDate;

};

class DataBaseEntry {

private:

 std::string employeeName;

 Period employmentPeriod;

public:

 Period getPeriod(void);

};

Period DataBaseEntry::getPeriod(void) {

3-284

 Return of non const handle to encapsulated data member

 return employmentPeriod;

}

void use(Period*);

void reset(Period*);

int main() {

 DataBaseEntry dataBase[NUM_RECORDS];

 Period tempPeriodVal;

 Period* tempPeriod;

 for(int i=0;i < NUM_RECORDS;i++) {

 tempPeriodVal = dataBase[i].getPeriod();

 tempPeriod = &tempPeriodVal;

 use(tempPeriod);

 reset(tempPeriod);

 }

 return 0;

}

void reset(Period* aPeriod) {

 aPeriod->startDate.dd = 1;

 aPeriod->startDate.mm = 1;

 aPeriod->startDate.yyyy = 2000;

}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: breaking_data_encapsulation
Impact: Medium

See Also

Polyspace Analysis Options
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”

3-285

3 Checks

• “Review and Fix Results”

External Websites
• CWE-767: Access to Critical Private Variable via Public Method
• CERT C++: OOP08-CPP — Do not return references to private data

Introduced in R2015b

3-286

http://cwe.mitre.org/data/definitions/767.html
https://www.securecoding.cert.org/confluence/display/cplusplus/OOP08-CPP.+Do+not+return+references+to+private+data

 Self assignment not tested in operator

Self assignment not tested in operator

Copy assignment operator does not test for self-assignment

Description

Self assignment not tested in operator occurs when you do not test if the argument
to the copy assignment operator of an object is the object itself.

Risk

Self-assignment causes unnecessary copying. Though it is unlikely that you assign an
object to itself, because of aliasing, you or users of your class cannot always detect a self-
assignment.

Self-assignment can cause subtle errors if a data member is a pointer and you allocate
memory dynamically to the pointer. In your copy assignment operator, you typically
perform these steps:

1 Deallocate the memory originally associated with the pointer.

delete ptr;

2 Allocate new memory to the pointer. Initialize the new memory location with
contents obtained from the operator argument.

 ptr = new ptrType(*(opArgument.ptr));

If the argument to the operator, opArgument, is the object itself, after your first step, the
pointer data member in the operator argument, opArgument.ptr, is not associated with
a memory location. *opArgument.ptr contains unpredictable values. Therefore, in the
second step, you initialize the new memory location with unpredictable values.

Fix

Test for self-assignment in the copy assignment operator of your class. Only after the
test, perform the assignments in the copy assignment operator.

3-287

3 Checks

Examples

Missing Test for Self-Assignment

class MyClass1 { };

class MyClass2 {

public:

 MyClass2() : p_(new MyClass1()) { }

 MyClass2(const MyClass2& f) : p_(new MyClass1(*f.p_)) { }

 ~MyClass2() {

 delete p_;

 }

 MyClass2& operator= (const MyClass2& f)

 {

 delete p_;

 p_ = new MyClass1(*f.p_);

 return *this;

 }

private:

 MyClass1* p_;

};

In this example, the copy assignment operator in MyClass2 does not test for self-
assignment. If the parameter f is the current object, after the statement delete p_,
the memory allocated to pointer f.p_ is also deallocated. Therefore, the statement
p_ = new MyClass1(*f.p_) initializes the memory location that p_ points to with
unpredictable values.

Correction — Test for Self-Assignment

One possible correction is to test for self-assignment in the copy assignment operator.

class MyClass1 { };

class MyClass2 {

public:

 MyClass2() : p_(new MyClass1()) { }

 MyClass2(const MyClass2& f) : p_(new MyClass1(*f.p_)) { }

 ~MyClass2() {

 delete p_;

 }

 MyClass2& operator= (const MyClass2& f)

 {

 if(&f != this) {

3-288

 Self assignment not tested in operator

 delete p_;

 p_ = new MyClass1(*f.p_);

 }

 return *this;

 }

private:

 MyClass1* p_;

};

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: missing_self_assign_test
Impact: Medium

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2015b

3-289

3 Checks

Qualifier removed in conversion
Variable qualifier is lost during conversion

Description

Qualifier removed in conversion occurs during a conversion when one variable has a
qualifier and the other does not. For example, when converting from a const int to an
int, the conversion removes the const qualifier.

This defect applies only for projects in C.

Examples

Cast of Character Pointers

void implicit_cast(void) {

 const char cc, *pcc = &cc;

 char * quo;

 quo = &cc;

 quo = pcc;

 read(quo);

}

During the assignment to the character q, the variables, cc and pcc, are converted from
const char to char. The const qualifier is removed during the conversion causing a
defect.

Correction — Add Qualifiers

One possible correction is to add the same qualifiers to the new variables. In this
example, changing q to a const char fixes the defect.

void implicit_cast(void) {

 const char cc, *pcc = &cc;

 const char * quo;

3-290

 Qualifier removed in conversion

 quo = &cc;

 quo = pcc;

 read(quo);

}

Correction — Remove Qualifiers

One possible correction is to remove the qualifiers in the converted variable. In this
example, removing the const qualifier from the cc and pcc initialization fixes the
defect.

void implicit_basic_cast(void) {

 char cc, *pcc = &cc;

 char * quo;

 quo = &cc;

 quo = pcc;

 read(quo);

}

Check Information
Group: Programming
Language: C
Default: Off
Command-Line Syntax: qualifier_mismatch
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-704: Incorrect Type Conversion or Cast

3-291

http://cwe.mitre.org/data/definitions/704.html

3 Checks

• CERT C — EXP05-C: Do not cast away a const qualification
• CERT C — EXP32-C: Do not access a volatile object through a nonvolatile reference
• CERT C — EXP37-C: Call functions with the correct number and type of arguments

Introduced in R2013b

3-292

https://www.securecoding.cert.org/confluence/display/c/EXP00-C.+Use+parentheses+for+precedence+of+operation
https://www.securecoding.cert.org/confluence/display/c/EXP32-C.+Do+not+access+a+volatile+object+through+a+nonvolatile+reference
https://www.securecoding.cert.org/confluence/display/c/EXP37-C.+Call+functions+with+the+correct+number+and+type+of+arguments

 Shift of a negative value

Shift of a negative value
Shift operator on negative value

Description

Shift of a negative value occurs when a bit-wise shift is used on a negative number.
Shifts can overwrite the sign bit that identifies a number as negative.

Examples

Shifting a negative variable

int shifting(int val)

{

 int res = -1;

 return res << val;

}

In the return statement, the variable res is shifted a certain number of bits to the left.
However, because res is negative, the shift might overwrite the sign bit.

Correction — Change the Data Type

One possible correction is to change the data type of the shifted variable to unsigned.
This correction eliminates the sign bit, so left shifting does not change the sign of the
variable.

int shifting(int val)

{

 unsigned int res = -1;

 return res << val;

}

Check Information
Group: Numerical
Language: C | C++

3-293

3 Checks

Default: Off
Command-Line Syntax: shift_neg
Impact: Low

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Shift operation overflow

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CERT C — INT34-C: Do not shift an expression by a negative number of bits or by

greater than or equal to the number of bits that exist in the operand

Introduced in R2013b

3-294

https://www.securecoding.cert.org/confluence/display/c/INT34-C.+Do+not+shift+an+expression+by+a+negative+number+of+bits+or+by+greater+than+or+equal+to+the+number+of+bits+that+exist+in+the+operand
https://www.securecoding.cert.org/confluence/display/c/INT34-C.+Do+not+shift+an+expression+by+a+negative+number+of+bits+or+by+greater+than+or+equal+to+the+number+of+bits+that+exist+in+the+operand

 Shift operation overflow

Shift operation overflow
Overflow from shifting operation

Description
Shift operation overflow occurs when a shift operation exceeds the space available to
represent the resulting value.

The exact storage allocation for different data types depends on your processor. See
Target processor type (-target).

Examples

Left Shift of Integer

int left_shift(void) {

 int foo = 33;

 return 1 << foo;

}

In the return statement of this function, bit-wise shift operation is performed shifting 1
foo bits to the left. However, an int has only 32 bits, so the range of the shift must be
between 0 and 31. Therefore, this shift operation causes an overflow.

Correction — Different storage type

One possible correction is to store the shift operation result in a larger data type. In this
example, by returning a long long instead of an int, the overflow defect is fixed.

long long left_shift(void) {

 int foo = 33;

 return 1LL << foo;

}

Check Information
Group: Numerical

3-295

3 Checks

Language: C | C++
Default: Off
Command-Line Syntax: shift_ovfl
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-190: Integer Overflow or Wraparound
• CERT C — INT34-C: Do not shift an expression by a negative number of bits or by

greater than or equal to the number of bits that exist in the operand

Introduced in R2013b

3-296

http://cwe.mitre.org/data/definitions/190.html
https://www.securecoding.cert.org/confluence/display/c/INT34-C.+Do+not+shift+an+expression+by+a+negative+number+of+bits+or+by+greater+than+or+equal+to+the+number+of+bits+that+exist+in+the+operand
https://www.securecoding.cert.org/confluence/display/c/INT34-C.+Do+not+shift+an+expression+by+a+negative+number+of+bits+or+by+greater+than+or+equal+to+the+number+of+bits+that+exist+in+the+operand

 Sign change integer conversion overflow

Sign change integer conversion overflow

Overflow when converting between signed and unsigned integers

Description

Sign change integer conversion overflow occurs when converting an unsigned
integer to a signed integer. If the variable does not have enough bytes to represent both
the original constant and the sign bit, the conversion overflows.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples

Convert from unsigned char to char

char sign_change(void) {

 unsigned char count = 255;

 return (char)count;

}

In the return statement, the unsigned character variable count is converted to a signed
character. However, char has 8 bits, 1 for the sign of the constant and 7 to represent the
number. The conversion operation overflows because 255 uses 8 bits.

Correction — Change conversion types

One possible correction is using a larger integer type. By using an int, there are enough
bits to represent the sign and the number value.

int sign_change(void) {

 unsigned char count = 255;

 return (int)count;

}

3-297

3 Checks

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: sign_change
Impact: Medium

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Float conversion overflow | Unsigned integer conversion overflow | Integer conversion
overflow

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-194: Unexpected Sign Extension
• CWE-195: Signed to Unsigned Conversion Error
• CWE-196: Unsigned to Signed Conversion Error
• CERT C — INT31-C: Ensure that integer conversions do not result in lost or

misinterpreted data

Introduced in R2013b

3-298

http://cwe.mitre.org/data/definitions/194.html
http://cwe.mitre.org/data/definitions/195.html
http://cwe.mitre.org/data/definitions/196.html
https://www.securecoding.cert.org/confluence/display/c/INT31-C.+Ensure+that+integer+conversions+do+not+result+in+lost+or+misinterpreted+data
https://www.securecoding.cert.org/confluence/display/c/INT31-C.+Ensure+that+integer+conversions+do+not+result+in+lost+or+misinterpreted+data

 Standard function call with incorrect arguments

Standard function call with incorrect arguments
Argument to a standard function does not meet requirements for use in the function

Description

Standard function call with incorrect arguments occurs when the arguments to
certain standard functions do not meet the requirements for their use in the functions.

For instance, the arguments to these functions can be invalid in the following ways.

Function Type Situation Risk Fix

String manipulation
functions such as
strlen and strcpy

The pointer
arguments do not
point to a NULL-
terminated string.

The behavior of
the function is
undefined.

Pass a NULL-
terminated string to
string manipulation
functions.

File handling
functions in
stdio.h such as
fputc and fread

The FILE* pointer
argument can have
the value NULL.

The behavior of
the function is
undefined.

Test the FILE*
pointer for NULL
before using it as
function argument.

The file descriptor
argument can be -1.

The behavior of
the function is
undefined.

Most
implementations of
the open function
return a file
descriptor value
of -1. In addition,
they set errno to
indicate that an
error has occurred
when opening a file.

Test the return value
of the open function
for -1 before using
it as argument for
read or lseek.

If the return value is
-1, check the value of
errno to see which
error has occurred.

File handling
functions in
unistd.h such as
lseek and read

The file descriptor
argument represents

The behavior of
the function is
undefined.

Close the file
descriptor only after
you have completely

3-299

3 Checks

Function Type Situation Risk Fix

a closed file
descriptor.

finished using it.
Alternatively, reopen
the file descriptor
before using it as
function argument.

Directory name
generation functions
such as mkdtemp
and mkstemps

The last six
characters of the
string template are
not XXXXXX.

The function
replaces the last
six characters
with a string that
makes the file name
unique. If the last six
characters are not
XXXXXX, the function
cannot generate
a unique enough
directory name.

Test if the last six
characters of a string
are XXXXXX before
using the string as
function argument.

The string argument
is "".

The behavior is
implementation-
defined.

Test the string
argument for ""
before using it as
getenv or setenv
argument.

Functions related
to environment
variables such as
getenv and setenv

The string argument
terminates with
an equal sign, =.
For instance, "C="
instead of "C".

The behavior is
implementation-
defined.

Do not terminate
the string argument
with =.

String handling
functions such as
strtok and strstr

• strtok: The
delimiter
argument is "".

• strstr: The
search string
argument is "".

Some
implementations
do not handle these
edge cases.

Test the string for
"" before using it as
function argument.

3-300

 Standard function call with incorrect arguments

Examples

NULL Pointer Passed as strnlen Argument

#include <string.h>

#include <stdlib.h>

enum {

 SIZE10 = 10,

 SIZE20 = 20

};

int func() {

 char* s = NULL;

 return strnlen(s, SIZE20);

}

In this example, a NULL pointer is passed as strnlen argument instead of a NULL-
terminated string.

Before running analysis on the code, specify a GNU compiler. See Compiler (-compiler).

Correction — Pass NULL-terminated String

Pass a NULL-terminated string as the first argument of strnlen.

#include <string.h>

#include <stdlib.h>

enum {

 SIZE10 = 10,

 SIZE20 = 20

};

int func() {

 char* s = "";

 return strnlen(s, SIZE20);

}

Result Information
Group: Programming

3-301

3 Checks

Language: C | C++
Default: On
Command-Line Syntax: std_func_arg_mismatch
Impact: Medium

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE–628: Function Call with Incorrectly Specified Arguments
• CWE–685: Function Call With Incorrect Number of Arguments
• CWE–686: Function Call With Incorrect Argument Type
• CWE–687: Function Call With Incorrectly Specified Argument Value
• CERT C — API00-C: Functions should validate their parameters
• CERT C — EXP37-C: Call functions with the correct number and type of arguments
• CERT C — FIO46-C: Do not access a closed file
• CERT C — STR32-C: Do not pass a non-null-terminated character sequence to a

library function that expects a string

Introduced in R2015b

3-302

http://cwe.mitre.org/data/definitions/628.html
http://cwe.mitre.org/data/definitions/685.html
http://cwe.mitre.org/data/definitions/686.html
http://cwe.mitre.org/data/definitions/687.html
https://www.securecoding.cert.org/confluence/display/c/API00-C.+Functions+should+validate+their+parameters
https://www.securecoding.cert.org/confluence/display/c/EXP37-C.+Call+functions+with+the+correct+number+and+type+of+arguments
https://www.securecoding.cert.org/confluence/display/c/FIO46-C.+Do+not+access+a+closed+file
https://www.securecoding.cert.org/confluence/display/c/STR32-C.+Do+not+pass+a+non-null-terminated+character+sequence+to+a+library+function+that+expects+a+string
https://www.securecoding.cert.org/confluence/display/c/STR32-C.+Do+not+pass+a+non-null-terminated+character+sequence+to+a+library+function+that+expects+a+string

 Static uncalled function

Static uncalled function

Function with static scope not called in file

Description

Static uncalled function occurs when a static function is not called in the same file
where it is defined.

Examples

Uncalled function error

Save the following code in the file Initialize_Value.c

#include <stdlib.h>

#include <stdio.h>

static int Initialize(void)

/* Defect: Function not called */

 {

 int input;

 printf("Enter an integer:");

 scanf("%d",&input);

 return(input);

 }

 void main()

 {

 int num;

 num=0;

 printf("The value of num is %d",num);

 }

The static function Initialize is not called in the file Initialize_Value.c.

3-303

3 Checks

Correction — Call Function at Least Once

One possible correction is to call Initialize at least once in the file
Initialize_Value.c.

#include <stdlib.h>

#include <stdio.h>

static int Initialize(void)

 {

 int input;

 printf("Enter an integer:");

 scanf("%d",&input);

 return(input);

 }

 void main()

 {

 int num;

 /* Fix: Call static function Initialize */

 num=Initialize();

 printf("The value of num is %d",num);

 }

Check Information
Group: Data flow
Language: C | C++
Default: Off
Command-Line Syntax: uncalled_func
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

3-304

 Static uncalled function

External Websites
• CWE-561: Dead Code

Introduced in R2013b

3-305

http://cwe.mitre.org/data/definitions/561.html

3 Checks

Unprotected dynamic memory allocation
Pointer returned from dynamic allocation not checked for NULL value

Description

Unprotected dynamic memory allocation occurs when the code does not check
whether or not the dynamic memory allocation succeeded.

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a
value NULL if the requested memory is not available. If the code following the allocation
accesses the memory block without checking for the NULL value, this access is not
protected from failures.

Examples

Unprotected dynamic memory allocation error

#include <stdlib.h>

void Assign_Value(void)

{

 int* p = (int*)calloc(5, sizeof(int));

 *p = 2;

 /* Defect: p is not checked for NULL value */

 free(p);

}

If the memory allocation fails, the function calloc returns NULL to p. Before accessing
the memory through p, the code does not check whether p is NULL

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

3-306

 Unprotected dynamic memory allocation

void Assign_Value(void)

 {

 int* p = (int*)calloc(5, sizeof(int));

 /* Fix: Check if p is NULL */

 if(p!=NULL) *p = 2;

 free(p);

 }

Check Information
Group: Dynamic memory
Language: C | C++
Default: Off
Command-Line Syntax: unprotected_memory_allocation
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-789: Uncontrolled Memory Allocation
• CERT C — MEM10-C: Define and use a pointer validation function
• CERT C — MEM12-C: Consider a goto chain when leaving a function on error when

using and releasing resources

Introduced in R2013b

3-307

http://cwe.mitre.org/data/definitions/789.html
https://www.securecoding.cert.org/confluence/display/c/MEM10-C.+Define+and+use+a+pointer+validation+function
https://www.securecoding.cert.org/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources
https://www.securecoding.cert.org/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources

3 Checks

Unreachable code
Code following control-flow statements

Description
Unreachable code defects occur on code which cannot be reached because the preceding
code.

Statements such as break, goto, and return, move the flow of the program to another
section or function. Because of this flow escape, the statements following the control-flow
code, statistically, do not execute, and therefore the statements are unreachable.

This check also finds code following trivial infinite loops, such as while(1). These types
of loops only release the flow of the program by exiting the program. This type of exit
causes code after the infinite loop to be unreachable.

Examples

Unreachable Code After Return

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void guess(suit s);

suit deal(void){

 suit card = nextcard();

 if((card < SPADES) || (card > CLUBS))

 card = UNKNOWN_SUIT;

 return card;

 if (card < HEARTS) {

 guess(card);

 }

 return card;

}

In this example, there are missing braces and misleading indentation. The first return
statement changes the flow of code back to where the function was called. Because of this
return statement, the if-block and second return statement do not execute.

3-308

 Unreachable code

If you correct the indentation and the braces, the error becomes clearer.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void guess(suit s);

suit deal(void){

 suit card = nextcard();

 if((card < SPADES) || (card > CLUBS)){

 card = UNKNOWN_SUIT;

 }

 return card;

 if (card < HEARTS) {

 guess(card);

 }

 return card;

}

Correction — Remove Return

One possible correction is to remove the escape statement. In this example, remove the
first return statement to reach the final if statement.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void guess(suit s);

suit deal(void){

 suit card = nextcard();

 if((card < SPADES) || (card > CLUBS))

 {

 card = UNKNOWN_SUIT;

 }

 if(card < HEARTS)

 {

 guess(card);

 }

 return card;

}

3-309

3 Checks

Correction — Remove Unreachable Code

Another possible correction is to remove the unreachable code if you do not need it.
Because the function does not reach the second if-statement, removing it simplifies the
code and does not change the program behavior.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void guess(suit s);

suit deal(void){

 suit card = nextcard();

 if((card < SPADES) || (card > CLUBS))

 {

 card = UNKNOWN_SUIT;

 }

 return card;

}

Infinite Loop Causing Unreachable Code

int add_apples(int apple) {

 int count = 1;

 while(1) {

 if(apple < 99){

 apple++;

 count++;

 }else{

 count--;

 }

 }

 return count;

}

In this example, the while(1) statement creates an infinite loop. The return count
statement following this infinite loop is unreachable because the only way to exit this
infinite loop is to exit the program.

Correction — Rewrite Loop Condition

One possible correction is to change the loop condition to make the while loop finite. In
the example correction here, the loop uses the statement from the if condition: apple <
99.

3-310

 Unreachable code

int add_apples1(int apple) {

 int count = 0;

 while(apple < 99) {

 apple++;

 count++;

 }

 if(count == 0)

 count = -1;

 return count;

}

Correction — Add a Break Statement

Another possible correction is to add a break from the infinite loop, so there is a
possibility of reaching code after the infinite loop. In this example, a break is added to
the else block making the return count statement reachable.

int add_apples(int apple) {

 int count = 1;

 while(1) {

 if(apple < 99)

 {

 apple++;

 count++;

 }else{

 count--;

 break;

 }

 }

 return count;

}

Correction — Remove Unreachable Code

Another possible correction is to remove the unreachable code. This correction cleans up
the code and makes it easier to review and maintain. In this example, remove the return
statement and change the function return type to void.

void add_apples(int apple) {

 int count = 1;

 while(1) {

 if(apple < 99)

 {

 apple++;

3-311

3 Checks

 count++;

 }else{

 count--;

 }

 }

}

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: unreachable
Impact: Medium

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Code deactivated by constant false condition | Dead code | Useless if

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE–561: Dead Code
• CERT C — MSC01-C: Strive for logical completeness
• CERT C — MSC07-C: Detect and remove dead code
• CERT C — MSC12-C: Detect and remove code that has no effect or is never

executed

Introduced in R2013b

3-312

http://cwe.mitre.org/data/definitions/561.html
https://www.securecoding.cert.org/confluence/display/c/MSC01-C.+Strive+for+logical+completeness
https://www.securecoding.cert.org/confluence/display/c/MSC07-C.+Detect+and+remove+dead+code
https://www.securecoding.cert.org/confluence/display/c/MSC12-C.+Detect+and+remove+code+that+has+no+effect+or+is+never+executed
https://www.securecoding.cert.org/confluence/display/c/MSC12-C.+Detect+and+remove+code+that+has+no+effect+or+is+never+executed

 Unreliable cast of function pointer

Unreliable cast of function pointer
Function pointer cast to another function pointer with different argument or return type

Description

Unreliable cast of function pointer occurs when a function pointer is cast to another
function pointer that has different argument or return type.

This defect applies only if the code language for the project is C.

Examples

Unreliable cast of function pointer error

#include <math.h>

#include <stdio.h>

#define PI 3.142

double Calculate_Sum(int (*fptr)(double))

{

 double sum = 0.0;

 double y;

 for (int i = 0; i <= 100; i++)

 {

 y = (*fptr)(i*PI/100);

 sum += y;

 }

 return sum / 100;

}

int main(void)

{

 double (*fp)(double);

 double sum;

 fp = sin;

 sum = Calculate_Sum(fp);

3-313

3 Checks

 /* Defect: fp implicitly cast to int(*) (double) */

 printf("sum(sin): %f\n", sum);

 return 0;

}

The function pointer fp is declared as double (*)(double). However in passing it to
function Calculate_Sum, fp is implicitly cast to int (*)(double).

Correction — Avoid Function Pointer Cast

One possible correction is to check that the function pointer in the definition of
Calculate_Sum has the same argument and return type as fp. This step makes sure
that fp is not implicitly cast to a different argument or return type.

#include <math.h>

#include <stdio.h>

define PI 3.142

/*Fix: fptr has same argument and return type everywhere*/

double Calculate_Sum(double (*fptr)(double))

{

 double sum = 0.0;

 double y;

 for (int i = 0; i <= 100; i++)

 {

 y = (*fptr)(i*PI/100);

 sum += y;

 }

 return sum / 100;

}

int main(void)

{

 double (*fp)(double);

 double sum;

 fp = sin;

 sum = Calculate_Sum(fp);

 printf("sum(sin): %f\n", sum);

 return 0;

3-314

 Unreliable cast of function pointer

}

Check Information
Group: Static memory
Language: C/C++
Default: On
Command-Line Syntax: func_cast
Impact: Medium

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Unreliable cast of pointer

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CERT C — EXP37-C: Call functions with the correct number and type of arguments

Introduced in R2013b

3-315

https://www.securecoding.cert.org/confluence/display/c/EXP37-C.+Call+functions+with+the+correct+number+and+type+of+arguments

3 Checks

Unreliable cast of pointer
Pointer implicitly cast to different data type

Description

Unreliable cast of pointer occurs when a pointer is implicitly cast to a data type
different from its declaration type. Such an implicit casting can take place, for instance,
when a pointer to data type char is assigned the address of an integer.

This defect applies only if the code language for the project is C.

Examples

Unreliable cast of pointer error

 #include <string.h>

 void Copy_Integer_To_String()

 {

 int src[]={1,2,3,4,5,6,7,8,9,10};

 char buffer[]="Buffer_Text";

 strcpy(buffer,src);

 /* Defect: Implicit cast of (int*) to (char*) */

 }

src is declared as an int* pointer. The strcpy statement, while copying to buffer,
implicitly casts src to char*.

Correction — Avoid Pointer Cast

One possible correction is to declare the pointer src with the same data type as buffer.

 #include <string.h>

 void Copy_Integer_To_String()

 {

 /* Fix: Declare src with same type as buffer */

 char *src[10]={"1","2","3","4","5","6","7","8","9","10"};

 char *buffer[10];

3-316

 Unreliable cast of pointer

 for(int i=0;i<10;i++)

 buffer[i]="Buffer_Text";

 for(int i=0;i<10;i++)

 buffer[i]= src[i];

 }

Check Information
Group: Static memory
Language: C
Default: On
Command-Line Syntax: ptr_cast
Impact: Medium

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Unreliable cast of function pointer

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-704: Incorrect Type Conversion or Cast
• CWE-843: Access of Resource Using Incompatible Type ('Type Confusion')
• CERT C — EXP36-C: Do not cast pointers into more strictly aligned pointer types

Introduced in R2013b

3-317

http://cwe.mitre.org/data/definitions/704.html
http://cwe.mitre.org/data/definitions/843.html
https://www.securecoding.cert.org/confluence/display/c/EXP36-C.+Do+not+cast+pointers+into+more+strictly+aligned+pointer+types

3 Checks

Unsigned integer conversion overflow
Overflow when converting between unsigned integer types

Description

Unsigned integer conversion overflow occurs when converting an unsigned integer
to a smaller unsigned integer type. If the variable does not have enough bytes to
represent the original constant, the conversion overflows.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples

Converting from int to char

unsigned char convert(void) {

 unsigned int unum = 1000000U;

 return (unsigned char)unum;

}

In the return statement, the unsigned integer variable unum is converted to an unsigned
character type. However, the conversion overflows because 1000000 requires at least 20
bits. The C programming language standard does not view unsigned overflow as an error
because the program automatically reduces the result by modulo the maximum value
plus 1. In this example, unum is reduced by modulo 2^8 because a character data type
can only represent 2^8-1.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the
entire number. For example, long.

unsigned long convert(void) {

 unsigned int unum = 1000000U;

3-318

 Unsigned integer conversion overflow

 return (unsigned long)unum;

}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: uint_conv_ovfl
Impact: Low

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Float conversion overflow | Integer conversion overflow | Sign change integer conversion
overflow

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-190: Integer Overflow or Wraparound
• CWE-191: Integer Underflow (Wrap or Wraparound)
• CWE-197: Numeric Truncation Error
• CERT C — FLP34-C: Ensure that floating-point conversions are within range of the

new type
• CERT C — INT18-C: Evaluate integer expressions in a larger size before comparing

or assigning to that size
• CERT C — INT31-C: Ensure that integer conversions do not result in lost or

misinterpreted data

Introduced in R2013b

3-319

http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
http://cwe.mitre.org/data/definitions/197.html
https://www.securecoding.cert.org/confluence/display/c/FLP34-C.+Ensure+that+floating-point+conversions+are+within+range+of+the+new+type
https://www.securecoding.cert.org/confluence/display/c/FLP34-C.+Ensure+that+floating-point+conversions+are+within+range+of+the+new+type
https://www.securecoding.cert.org/confluence/display/c/INT18-C.+Evaluate+integer+expressions+in+a+larger+size+before+comparing+or+assigning+to+that+size
https://www.securecoding.cert.org/confluence/display/c/INT18-C.+Evaluate+integer+expressions+in+a+larger+size+before+comparing+or+assigning+to+that+size
https://www.securecoding.cert.org/confluence/display/c/INT31-C.+Ensure+that+integer+conversions+do+not+result+in+lost+or+misinterpreted+data
https://www.securecoding.cert.org/confluence/display/c/INT31-C.+Ensure+that+integer+conversions+do+not+result+in+lost+or+misinterpreted+data

3 Checks

Unsigned integer overflow
Overflow from operation between unsigned integers

Description

Unsigned integer overflow occurs when an operation on unsigned integer variables
exceeds the space available to represent the resulting value. The exact storage allocation
for different integer types depends on your processor. See Target processor type (-
target).

Examples

Add One to Maximum Unsigned Integer

#include <limits.h>

unsigned int plusplus(void) {

 unsigned uvar = UINT_MAX;

 uvar++;

 return uvar;

}

In the third statement of this function, the variable uvar is increased by 1. However,
the value of uvar is the maximum unsigned integer value, so 1 plus the maximum
integer value cannot be represented by an unsigned int. The C programming language
standard does not view unsigned overflow as an error because the program automatically
reduces the result by modulo the maximum value plus 1. In this example, uvar is
reduced by modulo UINT_MAX. The result is uvar = 1.

Correction — Different Storage Type

One possible correction is to store the operation result in a larger data type. In this
example, by returning an unsigned long long instead of an unsigned int, the
overflow error is fixed.

#include <limits.h>

3-320

 Unsigned integer overflow

unsigned long long plusplus(void) {

 unsigned long long ullvar = UINT_MAX;

 ullvar++;

 return ullvar;

}

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: uint_ovfl
Impact: Low

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer overflow | Float overflow

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-190: Integer Overflow or Wraparound
• CWE-191: Integer Underflow (Wrap or Wraparound)
• CERT C — INT18-C: Evaluate integer expressions in a larger size before comparing

or assigning to that size
• CERT C — INT30-C: Ensure that unsigned integer operations do not wrap

Introduced in R2013b

3-321

http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
https://www.securecoding.cert.org/confluence/display/c/INT18-C.+Evaluate+integer+expressions+in+a+larger+size+before+comparing+or+assigning+to+that+size
https://www.securecoding.cert.org/confluence/display/c/INT18-C.+Evaluate+integer+expressions+in+a+larger+size+before+comparing+or+assigning+to+that+size
https://www.securecoding.cert.org/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap

3 Checks

Unused parameter
Function prototype has parameters not read or written in function body

Description

Unused parameter occurs when a function parameter is neither read nor written in the
function body.

Risk

Unused function parameters cause the following issues:

• Indicate that the code is possibly incomplete. The parameter is possibly intended for
an operation that you forgot to code.

• If the copied objects are large, redundant copies can slow down performance.

Fix

Determine if you intend to use the parameters. Otherwise, remove parameters that you
do not use in the function body.

You can intentionally have unused parameters. For instance, you have parameters that
you intend to use later when you add enhancements to the function. Add a code comment
indicating your intention for later use. The code comment helps you or a code reviewer
understand why your function has unused parameters.

Alternatively, add a statement such as (void)var; in the function body. var is the
unused parameter. You can define a macro that expands to this statement and add the
macro to the function body.

Examples

Unused Parameter

void func(int* xptr, int* yptr, int flag) {

3-322

 Unused parameter

 if(flag==1) {

 *xptr=0;

 }

 else {

 *xptr=1;

 }

}

int main() {

 int x,y;

 func(&x,&y,1);

 return 0;

}

In this example, the parameter yptr is not used in the body of func.

Correction — Use Parameter

One possible correction is to check if you intended to use the parameter. Fix your code if
you intended to use the parameter.

void func(int* xptr, int* yptr, int flag) {

 if(flag==1) {

 *xptr=0;

 *yptr=1;

 }

 else {

 *xptr=1;

 *yptr=0;

 }

}

int main() {

 int x,y;

 func(&x,&y,1);

 return 0;

}

Correction — Explicitly Indicate Unused Parameter

Another possible correction is to explicitly indicate that you are aware of the unused
parameter.

#define UNUSED(x) (void)x

3-323

3 Checks

void func(int* xptr, int* yptr, int flag) {

 UNUSED(yptr);

 if(flag==1) {

 *xptr=0;

 }

 else {

 *xptr=1;

 }

}

int main() {

 int x,y;

 func(&x,&y,1);

 return 0;

}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: unused_parameter
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CERT C — MSC13-C: Detect and remove unused values

Introduced in R2015b

3-324

https://www.securecoding.cert.org/confluence/display/c/MSC13-C.+Detect+and+remove+unused+values

 Useless if

Useless if
Unnecessary if conditional

Description
Useless if occurs on if-statements where the condition is always true. This defect occurs
only on if-statements that do not have an else-statement.

This defect shows unnecessary if-statements when there is no difference in code
execution if the if-statement is removed.

Examples

if with Enumerated Type

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void do_something(suit s);

void bridge(void)

{

 suit card = nextcard();

 if ((card < SPADES) || (card > CLUBS)){

 card = UNKNOWN_SUIT;

 }

 if (card < 7) {

 do_something(card);

 }

}

The type suit is enumerated with five options. However, the conditional expression
card < 7 always evaluates to true because card can be at most 5. The if statement is
unnecessary.

Correction — Change Condition

One possible correction is to change the if-condition in the code. In this correction, the 7
is changed to UNKNOWN_SUIT to relate directly to the type of card.

3-325

3 Checks

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void do_something(suit s);

void bridge(void)

{

 suit card = nextcard();

 if ((card < SPADES) || (card > CLUBS)){

 card = UNKNOWN_SUIT;

 }

 if (card > UNKNOWN_SUIT) {

 do_something(card);

 }

}

Correction — Remove If

Another possible correction is to remove the if-condition in the code. Because the
condition is always true, you can remove the condition to simplify your code.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void do_something(suit s);

void bridge(void)

{

 suit card = nextcard();

 if ((card < SPADES) || (card > CLUBS)){

 card = UNKNOWN_SUIT;

 }

 do_something(card);

}

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: useless_if
Impact: Medium

3-326

 Useless if

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Code deactivated by constant false condition | Dead code | Unreachable
code

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2013b

3-327

3 Checks

Use of memset with size argument zero
Size argument of function in memset family is zero

Description

Use of memset with size argument zero occurs when you call a function in the
memset family with size argument zero. Functions include memset, wmemset, bzero,
SecureZeroMemory, RtlSecureZeroMemory, and so on.

Risk

void *memset (void *ptr, int value, size_t num) fills the first num bytes
of the memory block that ptr points to with the specified value. A zero value of num
renders the call to memset redundant. The memory that ptr points to:

• Remains uninitialized, if not previously initialized.
• Is not cleared and can contain sensitive data, if previously initialized.

Fix

Determine if the zero size argument occurs because of a previous error in your code. Fix
the error.

Examples

Zero Size Argument of memset

#include <stdio.h>

#include <string.h>

void func (unsigned int size)

{

 char str[] = "Buffer to be filled.";

 memset (str,'-',size);

 puts (str);

3-328

 Use of memset with size argument zero

}

void calling_func(void) {

 unsigned int buf_size=0;

 func(buf_size);

}

In this example, the argument size of memset is zero.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: memset_invalid_size
Impact: Medium

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Call to memset with unintended value

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-665: Improper Initialization
• CERT C — MSC12-C: Detect and remove code that has no effect or is never

executed

Introduced in R2015b

3-329

http://cwe.mitre.org/data/definitions/665.html
https://www.securecoding.cert.org/confluence/display/c/MSC12-C.+Detect+and+remove+code+that+has+no+effect+or+is+never+executed
https://www.securecoding.cert.org/confluence/display/c/MSC12-C.+Detect+and+remove+code+that+has+no+effect+or+is+never+executed

3 Checks

Use of path manipulation function without maximum
sized buffer checking
Destination buffer of getwd or realpath is smaller than PATH_MAX bytes

Description
Use of path manipulation function without maximum-sized buffer checking
occurs when the destination argument of a path manipulation function such as
realpath or getwd has a buffer size less than PATH_MAX bytes.

Risk

A buffer smaller than PATH_MAX bytes can overflow but you cannot test the function
return value to determine if an overflow occurred. If an overflow occurs, following the
function call, the content of the buffer is undefined.

For instance, char *getwd(char *buf) copies an absolute path name of the current
folder to its argument. If the length of the absolute path name is greater than PATH_MAX
bytes, getwd returns NULL and the content of *buf is undefined. You can test the return
value of getwd for NULL to see if the function call succeeded.

However, if the allowed buffer for buf is less than PATH_MAX bytes, a failure can occur
for a smaller absolute path name. In this case, getwd does not return NULL even though
a failure occurred. Therefore, the allowed buffer for buf must be PATH_MAX bytes long.

Fix

Possible fixes are:

• Use a buffer size of PATH_MAX bytes. If you obtain the buffer from an unknown source,
before using the buffer as argument of getwd or realpath function, make sure that
the size is less than PATH_MAX bytes.

• Use a path manipulation function that allows you to specify a buffer size.

For instance, if you are using getwd to get the absolute path name of the current
folder, use char *getcwd(char *buf, size_t size); instead. The additional
argument size allows you to specify a size greater than or equal to PATH_MAX.

3-330

 Use of path manipulation function without maximum sized buffer checking

• Allow the function to allocate additional memory dynamically, if possible.

For instance, char *realpath(const char *path, char *resolved_path);
dynamically allocates memory if resolved_path is NULL. However, you have to
deallocate this memory later using the free function.

Examples

Possible Buffer Overflow in Use of getwd Function

#include <unistd.h>

#include <linux/limits.h>

#include <stdio.h>

void func(void) {

 char buf[PATH_MAX];

 if (getwd(buf+1)!= NULL) {

 printf("cwd is %s\n", buf);

 }

}

In this example, although the array buf has PATH_MAX bytes, the argument of getwd is
buf + 1, whose allowed buffer is less than PATH_MAX bytes.

Correction — Use Array of Size PATH_MAX Bytes

One possible correction is to use an array argument with size equal to PATH_MAX bytes.

#include <unistd.h>

#include <linux/limits.h>

#include <stdio.h>

void func(void) {

 char buf[PATH_MAX];

 if (getwd(buf)!= NULL) {

 printf("cwd is %s\n", buf);

 }

}

Result Information
Group: Static memory

3-331

3 Checks

Language: C | C++
Default: Off
Command-Line Syntax: path_buffer_overflow
Impact: High

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer

Introduced in R2015b

3-332

http://cwe.mitre.org/data/definitions/785.html

 Use of previously closed resource

Use of previously closed resource
Function operates on a previously closed stream

Description

Use of previously closed resource occurs when a function operates on a stream that
you closed earlier in your code.

Risk

The standard states that the value of a FILE* pointer is indeterminate after you
close the stream associated with it. Operations using the FILE* pointer can produce
unintended results.

Fix

One possible fix is to close the stream only at the end of operations. Another fix is to
reopen the stream before using it again.

Examples

Use of FILE* Pointer After Closing Stream

#include <stdio.h>

void func(void) {

 FILE *fp;

 void *ptr;

 fp = fopen("tmp","w");

 if(fp != NULL) {

 fclose(fp);

 fprintf(fp,"text");

 }

}

3-333

3 Checks

In this example, fclose closes the stream associated with fp. When you use fprintf
on fp after fclose, the Use of previously closed resource defect appears.

Correction — Close Stream After All Operations

One possible correction is to reverse the order of the fprintf and fclose operations.

#include <stdio.h>

void func(void) {

 FILE *fp;

 void *ptr;

 fp = fopen("tmp","w");

 if(fp != NULL) {

 fprintf(fp,"text");

 fclose(fp);

 }

}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: closed_resource_use
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
MISRA C:2012 Rule 22.6

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

3-334

 Use of previously closed resource

External Websites
• CWE 672: Operation on a Resource after Expiration or Release
• CERT C — FIO46-C: Do not access a closed file

Introduced in R2015b

3-335

http://cwe.mitre.org/data/definitions/672.html
https://www.securecoding.cert.org/confluence/display/c/FIO46-C.+Do+not+access+a+closed+file

3 Checks

Use of previously freed pointer
Memory accessed after deallocation

Description

Use of previously freed pointer occurs when a block of memory is accessed after it is
freed using the free function.

Examples

Use of Previously Freed Pointer Error

#include <stdlib.h>

#include <stdio.h>

 int increment_content_of_address(int base_val, int shift)

 {

 int j;

 int* pi = (int*)malloc(sizeof(int));

 if (pi == NULL) return 0;

 *pi = base_val;

 free(pi);

 j = *pi + shift;

 /* Defect: Reading a freed pointer */

 return j;

 }

The free statement releases the block of memory that pi refers to. Therefore,
dereferencingpi after the free statement is not valid.

Correction — Free Pointer After Use

One possible correction is to free the pointer pi only after the last instance where it is
accessed.

#include <stdlib.h>

3-336

 Use of previously freed pointer

int increment_content_of_address(int base_val, int shift)

{

 int j;

 int* pi = (int*)malloc(sizeof(int));

 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;

 *pi = 0;

 /* Fix: The pointer is freed after its last use */

 free(pi);

 return j;

}

Check Information
Group: Dynamic memory
Language: C | C++
Default: On
Command-Line Syntax: freed_ptr
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Deallocation of previously deallocated pointer

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-416: Use After Free

3-337

http://cwe.mitre.org/data/definitions/416.html

3 Checks

• CERT C — MEM00-C: Allocate and free memory in the same module, at the same
level of abstraction

• CERT C — MEM30-C: Do not access freed memory

Introduced in R2013b

3-338

https://www.securecoding.cert.org/confluence/display/c/MEM00-C.+Allocate+and+free+memory+in+the+same+module%2C+at+the+same+level+of+abstraction
https://www.securecoding.cert.org/confluence/display/c/MEM00-C.+Allocate+and+free+memory+in+the+same+module%2C+at+the+same+level+of+abstraction
https://www.securecoding.cert.org/confluence/display/c/MEM30-C.+Do+not+access+freed+memory

 Use of setjmp/longjmp

Use of setjmp/longjmp

setjmp and longjmp cause deviation from normal control flow

Description

Use of setjmp/longjmp occurs when you use a combination of setjmp and longjmp or
sigsetjmp and siglongjmp to deviate from normal control flow and perform non-local
jumps in your code.

Risk

Using setjmp and longjmp, or sigsetjmp and siglongjmp has the following risks:

• Nonlocal jumps are vulnerable to attacks that exploit common errors such as buffer
overflows. Attackers can redirect the control flow and potentially execute arbitrary
code.

• Resources such as dynamically allocated memory and open files might not be closed,
causing resource leaks.

• If you use setjmp and longjmp in combination with a signal handler, unexpected
control flow can occur. POSIX does not specify whether setjmp saves the signal
mask.

• Using setjmp and longjmp or sigsetjmp and siglongjmp makes your program
difficult to understand and maintain.

Fix

Perform nonlocal jumps in your code using setjmp/longjmp or sigsetjmp/
siglongjmp only in contexts where such jumps can be performed securely.
Alternatively, use POSIX threads if possible.

In C++, to simulate throwing and catching exceptions, use standard idioms such as
throw expressions and catch statements.

3-339

3 Checks

Examples

Use of setjmp and longjmp

#include <setjmp.h>

#include <signal.h>

extern int update(int);

extern void print_int(int);

static jmp_buf env;

void sighandler(int signum) {

 longjmp(env, signum);

}

void func_main(int i) {

 signal(SIGINT, sighandler);

 if (setjmp(env)==0) {

 while(1) {

 /* Main loop of program, iterates until SIGINT signal catch */

 i = update(i);

 }

 } else {

 /* Managing longjmp return */

 i = -update(i);

 }

 print_int(i);

 return;

}

In this example, the initial return value of setjmp is 0. The update function is called in
an infinite while loop until the user interrupts it through a signal.

In the signal handling function, the longjmp statement causes a jump back to main and
the return value of setjmp is now 1. Therefore, the else branch is executed.

Correction — Use Alternative to setjmp and longjmp

To emulate the same behavior more securely, use a volatile global variable instead of
a combination of setjmp and longjmp.

#include <setjmp.h>

#include <signal.h>

3-340

 Use of setjmp/longjmp

extern int update(int);

extern void print_int(int);

volatile sig_atomic_t eflag = 0;

void sighandler(int signum) {

 eflag = signum; /* Fix: using global variable */

}

void func_main(int i) {

 /* Fix: Better design to avoid use of setjmp/longjmp */

 signal(SIGINT, sighandler);

 while(!eflag) { /* Fix: using global variable */

 /* Main loop of program, iterates until eflag is changed */

 i = update(i);

 }

 print_int(i);

 return;

}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: setjmp_longjmp_use
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE–691: Insufficient Control Flow Management

3-341

http://cwe.mitre.org/data/definitions/691.html

3 Checks

• CVE-2013-4788 - Eglibc PTR MANGLE vulnerability
• CERT C : MSC22-C: Use the setjmp(), longjmp() facility securely
• CERT C++: ERR52-CPP — Do not use setjmp() or longjmp()
• Linux man page for setjmp

Introduced in R2015b

3-342

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4788
https://www.securecoding.cert.org/confluence/display/c/MSC22-C.+Use+the+setjmp%28%29%2C+longjmp%28%29+facility+securely
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1834
http://man7.org/linux/man-pages/man3/setjmp.3.html

 Variable length array with nonpositive size

Variable length array with nonpositive size
Size of variable-length array is zero or negative

Description

Variable length array with non-positive size occurs when size of a variable-length
array is zero or negative.

Risk

If the size of a variable-length array is zero or negative, unexpected behavior can occur,
such as stack overflow.

Fix

When you declare a variable-length array as a local variable in a function:

• If you use a function parameter as the array size, check that the parameter is
positive.

• If you use the result of a computation on a function parameter as the array size, check
that the result is positive.

You can place a test for positive value either before the function call or the array
declaration in the function body.

Examples

Nonpositive Array Size

int input(void);

void add_scalar(int n, int m) {

 int r=0;

 int arr[m][n];

 for (int i=0; i<m; i++) {

3-343

3 Checks

 for (int j=0; j<n; j++) {

 arr[i][j] = input();

 r += arr[i][j];

 }

 }

}

void main() {

 add_scalar(2,2);

 add_scalar(-1,2);

 add_scalar(2,0);

}

In this example, the second and third calls to add_scalar result in a negative and zero
size of arr.

Correction — Make Array Size Positive

One possible correction is fix or remove calls that result in a nonpositive array size.

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: non_positive_vla_size
Impact: High

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-687: Function Call with Incorrectly Specified Argument Value
• CERT C — MEM04-C: Beware of zero-length allocations

3-344

http://cwe.mitre.org/data/definitions/687.html
https://www.securecoding.cert.org/confluence/display/c/MEM04-C.+Beware+of+zero-length+allocations

 Variable length array with nonpositive size

• CERT C — MEM05-C: Avoid large stack allocations

Introduced in R2015b

3-345

https://www.securecoding.cert.org/confluence/display/c/MEM05-C.+Avoid+large+stack+allocations

3 Checks

Variable shadowing
Variable hides another variable of same name with nested scope

Description

Variable shadowing occurs when a variable hides another variable of the same name
with nested scope.

Examples

Variable Shadowing Error

#include <stdio.h>

int fact[5]={1,2,6,24,120};

int factorial(int n)

 {

 int fact=1;

 /*Defect: Local variable hides global array with same name */

 for(int i=1;i<=n;i++)

 fact*=i;

 return(fact);

 }

Inside the factorial function, the integer variable fact hides the global integer array
fact.

Correction — Change Variable Name

One possible correction is to change the name of one of the variables, preferably the one
with more local scope.

#include <stdio.h>

int fact[5]={1,2,6,24,120};

3-346

 Variable shadowing

int factorial(int n)

 {

 /* Fix: Change name of local variable */

 int f=1;

 for(int i=1;i<=n;i++)

 f*=i;

 return(f);

 }

Check Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: var_shadowing
Impact: Low

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CERT C — DCL01-C: Do not reuse variable names in subscopes

Introduced in R2013b

3-347

https://www.securecoding.cert.org/confluence/display/c/DCL01-C.+Do+not+reuse+variable+names+in+subscopes

3 Checks

Writing to const qualified object
Object declared with a const qualifier is modified

Description

Writing to const qualified object occurs when you do one of the following:

• Use a const-qualified object as the destination of an assignment.
• Pass a const-qualified object to a function that modifies the argument.

For instance, the defect can occur in the following situations:

Situation Risk Fix

You pass a const-qualified
object as first argument
of one of the following
functions:

• mkstemp

• mkostemp

• mkostemps

• mkdtemp

These functions replace
the last six characters
of their first argument
with a string. Therefore,
they expect a modifiable
char array as their first
argument.

Pass a non-const object
as first argument of the
function.

You pass a const-qualified
object as the destination
argument of one of the
following functions:

• strcpy

• strncpy

• strcat

• memset

These functions modify
their destination argument.
Therefore, they expect a
modifiable char array as
their destination argument.

Pass a non-const object as
destination argument of the
function.

You perform a write
operation on a const-
qualified object.

The const qualifier implies
an agreement that the value
of the object will not be

Perform the write operation
on a non-const object.

3-348

 Writing to const qualified object

Situation Risk Fix

modified. By writing to a
const-qualified object, you
break the agreement. The
result of the operation is
undefined.

Examples

Writing to const-Qualified Object

#include <string.h>

const char* buffer = "abcdeXXXXXXX";

void func(char* string) {

 strcpy((char*)strchr(buffer,'X'),string);

}

In this example, because buffer is const-qualified, strchr(buffer,'X') returns
a const-qualified char* pointer. When this char* pointer is used as the destination
argument of strcpy, a Writing to const qualified object error appears.

Correction — Copy const-Qualified Object to Non-const Object

One possible correction is to assign the constant string to a non-const object and use the
non-const object as destination argument of strchr.

#include <string.h>

char buffer[] = "abcdeXXXXXXX";

void func(char* string) {

 strcpy(strchr(buffer,'X'),string);

}

Result Information
Group: Programming

3-349

3 Checks

Language: C | C++
Default: On
Command-Line Syntax: constant_object_write
Impact: High

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE 227: Improper Fulfillment of API Contract
• CWE 471: Modification of Assumed-Immutable Data
• CWE 686: Function Call with Incorrect Argument Type
• CERT C — EXP40-C: Do not modify constant objects
• CERT C — STR05-C: Use pointers to const when referring to string literals
• CERT C — STR06-C: Do not assume strtok() leaves the parse string unchanged
• CERT C — STR30-C: Do not attempt to modify string literals

Introduced in R2015b

3-350

http://cwe.mitre.org/data/definitions/227.html
http://cwe.mitre.org/data/definitions/471.html
http://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/display/c/EXP40-C.+Do+not+modify+constant+objects
https://www.securecoding.cert.org/confluence/display/c/STR05-C.+Use+pointers+to+const+when+referring+to+string+literals
https://www.securecoding.cert.org/confluence/display/c/STR06-C.+Do+not+assume+that+strtok%28%29+leaves+the+parse+string+unchanged
https://www.securecoding.cert.org/confluence/display/c/STR30-C.+Do+not+attempt+to+modify+string+literals

 Writing to read-only resource

Writing to read-only resource
File initially opened as read only is modified

Description

Writing to read-only resource occurs when you attempt to write to a file that you
have opened earlier in read-only mode.

For instance, you open a file using fopen with the access mode argument r. You write to
that file with a function in the fprintf family.

Risk

Writing to a read-only file causes undefined behavior.

Fix

If you want to write to the file, open the file in a mode that is suitable for writing.

Examples

Writing to Read-Only File

#include <stdio.h>

void func(void) {

 FILE* fp ;

 fp = fopen("file.txt", "r");

 fprintf(fp, "Some data");

 fclose(fp);

}

In this example, the file file.txt is opened in read-only mode. When the FILE pointer
associated with file.txt is used as an argument of fprintf, a Writing to read-only
resource defect occurs.

3-351

3 Checks

Correction — Open File as Writable

One possible correction is to use the access specifier "a" instead of "r". file.txt is now
open for output at the end of the file.

#include <stdio.h>

void func(void) {

 FILE* fp ;

 fp = fopen("file.txt", "a");

 fprintf(fp, "Some data");

 fclose(fp);

}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: read_only_resource_write
Impact: High

See Also
Find defects (-checkers)

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

Introduced in R2015b

3-352

 Write without a further read

Write without a further read
Variable never read after assignment

Description

Write without a further read occurs when a value assigned to a variable is never read.

Examples

Write Without Further Read Error

void sensor_amplification(void)

{

 extern int getsensor(void);

 int level;

 level = 4 * getsensor();

 /* Defect: Useless write */

}

After the variable level gets assigned the value 4 * getsensor(), it is not read.

Correction — Use Value After Assignment

One possible correction is to use the variable level after the assignment.

#include <stdio.h>

void sensor_amplification(void)

{

 extern int getsensor(void);

 int level;

 level = 4 * getsensor();

 /* Fix: Use level after assignment */

 printf("The value is %d", level);

3-353

3 Checks

}

The variable level is printed, reading the new value.

Check Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: useless_write
Impact: Low

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
MISRA C:2012 Rule 2.2

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-398: Indicator of Poor Code Quality
• CERT C — DCL22-C: Use volatile for data that cannot be cached
• CERT C — MSC13-C: Detect and remove unused values

Introduced in R2013b

3-354

http://cwe.mitre.org/data/definitions/398.html
https://www.securecoding.cert.org/confluence/display/c/DCL22-C.+Use+volatile+for+data+that+cannot+be+cached
https://www.securecoding.cert.org/confluence/display/c/MSC13-C.+Detect+and+remove+unused+values

 Wrong allocated object size for cast

Wrong allocated object size for cast
Allocated memory does not match destination pointer

Description

Wrong allocated object size for cast occurs during pointer conversion when the
pointer’s address is unaligned. If a pointer is converted to a different pointer type, the
size of the allocated memory must be a multiple of the size of the destination pointer.

Examples

Dynamic Allocation of Pointers

#include <stdlib.h>

void dyn_non_align(void){

 void *ptr = malloc(13);

 long *dest;

 dest = (long*)ptr; //defect

}

In this example, the software raises a defect on the conversion of ptr to a long* in line
5. The dynamically allocated memory of ptr, 13 bytes, is not a multiple of the size of
dest, 4 bytes. This misalignment causes the Wrong allocated object size for cast
defect.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size.
In this example, resolve the defect by changing the allocated memory to 12 instead of 13.

#include <stdlib.h>

void dyn_non_align(void){

 void *ptr = malloc(12);

 long *dest;

3-355

3 Checks

 dest = (long*)ptr;

}

Static Allocation of Pointers

void static_non_align(void){

 char arr[13], *ptr;

 int *dest;

 ptr = &arr[0];

 dest = (int*)ptr; //defect

}

In this example, the software raises a defect on the conversion of ptr to an int* in
line 6. ptr has a memory size of 13 bytes because the array arr has a size of 13 bytes.
The size of dest is 4 bytes, which is not a multiple of 13. This misalignment causes the
Wrong allocated object size for cast defect.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size.
In this example, resolve the defect by changing the size of the array arr to a multiple of
4.

void static_non_align(void){

 char arr[12], *ptr;

 int *dest;

 ptr = &arr[0];

 dest = (int*)ptr;

}

Allocation with a Function

#include <stdlib.h>

void *my_alloc(int size) {

 void *ptr_func = malloc(size);

 if(ptr_func == NULL) exit(-1);

 return ptr_func;

}

3-356

 Wrong allocated object size for cast

void fun_non_align(void){

 int *dest1;

 char *dest2;

 dest1 = (int*)my_alloc(13); //defect

 dest2 = (char*)my_alloc(13); //not a defect

}

In this example, the software raises a defect on the conversion of the pointer returned
by my_alloc(13) to an int* in line 11. my_alloc(13) returns a pointer with a
dynamically allocated size of 13 bytes. The size of dest1 is 4 bytes, which is not a divisor
of 13. This misalignment causes the Wrong allocated object size for cast defect. In
line 12, the same function call, my_alloc(13), does not call a defect for the conversion
to dest2 because the size of char*, 1 byte, a divisor of 13.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size.
In this example, resolve the defect by changing the argument for my_alloc to a multiple
of 4.

#include <stdlib.h>

void *my_alloc(int size) {

 void *ptr_func = malloc(size);

 if(ptr_func == NULL) exit(-1);

 return ptr_func;

}

void fun_non_align(void){

 int *dest1;

 char *dest2;

 dest1 = (int*)my_alloc(12);

 dest2 = (char*)my_alloc(13);

}

Check Information
Group: Static Memory
Language: C | C++
Default: Off
Command-Line Syntax: object_size_mismatch

3-357

3 Checks

Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Unreliable cast of pointer

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-704: Incorrect Type Conversion or Cast
• CERT C — MEM02-C: Immediately cast the result of a memory allocation function

call into a pointer to the allocated type
• CERT C — STR38-C: Do not confuse narrow and wide characters strings and

functions

Introduced in R2013b

3-358

http://cwe.mitre.org/data/definitions/704.html
https://www.securecoding.cert.org/confluence/display/c/MEM02-C.+Immediately+cast+the+result+of+a+memory+allocation+function+call+into+a+pointer+to+the+allocated+type
https://www.securecoding.cert.org/confluence/display/c/MEM02-C.+Immediately+cast+the+result+of+a+memory+allocation+function+call+into+a+pointer+to+the+allocated+type
https://www.securecoding.cert.org/confluence/display/c/STR38-C.+Do+not+confuse+narrow+and+wide+character+strings+and+functions
https://www.securecoding.cert.org/confluence/display/c/STR38-C.+Do+not+confuse+narrow+and+wide+character+strings+and+functions

 Wrong type used in sizeof

Wrong type used in sizeof
sizeof argument does not match pointed type

Description
Wrong type used in sizeof occurs when both of the following conditions hold:

• You assign the address of a block of memory to a pointer, or transfer data between
two blocks of memory. The assignment or copy uses the sizeof operator.

For instance, you initialize a pointer using malloc(sizeof(type)) or copy
data between two addresses using memcpy(destination_ptr, source_ptr,
sizeof(type)).

• You use an incorrect type as argument of the sizeof operator. You use the pointer
type instead of the type that the pointer points to.

For instance, to initialize a type* pointer, you use malloc(sizeof(type*))
instead of malloc(sizeof(type)).

Rationale

Irrespective of what type stands for, the expression sizeof(type*) always returns a
fixed size. The size returned is the pointer size on your platform in bytes. The appearance
of sizeof(type*) often indicates an unintended usage. The error can cause allocation
of a memory block that is much smaller than what you need and lead to weaknesses such
as buffer overflows.

For instance, assume that structType is a structure with ten int variables. If you
initialize a structType* pointer using malloc(sizeof(structType*)) on a 32-bit
platform, the pointer is assigned a memory block of four bytes. However, to be allocated
completely for one structType variable, the structType* pointer must point to a
memory block of sizeof(structType) = 10 * sizeof(int) bytes. The required
size is much greater than the actual allocated size of four bytes.

Fix

To initialize a type* pointer, replace sizeof(type*) in your pointer initialization
expression with sizeof(type).

3-359

3 Checks

Examples

Allocate a Char Array With sizeof

void test_case_1(void) {

 char* str;

 str = (char*)malloc(sizeof(char*) * 5);

 free(str);

}

In this example, memory is allocated for the character pointer str using a malloc of
five char pointers. However, str is a pointer to a character, not a pointer to a character
pointer. Therefore the sizeof argument, char*, is incorrect.

Correction — Match Pointer Type to sizeof Argument

One possible correction is to match the argument to the pointer type. In this example,
str is a character pointer, therefore the argument must also be a character.

void test_case_1(void) {

 char* str;

 str = (char*)malloc(sizeof(char) * 5);

 free(str);

}

Check Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: ptr_sizeof_mismatch
Impact: High

See Also
Find defects (-checkers)

3-360

 Wrong type used in sizeof

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-467: Use of sizeof() on a Pointer Type
• CERT C — MEM02-C: Immediately cast the result of a memory allocation function

call into a pointer to the allocated type
• CERT C — MEM35-C: Allocate sufficient memory for an object

Introduced in R2013b

3-361

http://cwe.mitre.org/data/definitions/467.html
https://www.securecoding.cert.org/confluence/display/c/MEM02-C.+Immediately+cast+the+result+of+a+memory+allocation+function+call+into+a+pointer+to+the+allocated+type
https://www.securecoding.cert.org/confluence/display/c/MEM02-C.+Immediately+cast+the+result+of+a+memory+allocation+function+call+into+a+pointer+to+the+allocated+type
https://www.securecoding.cert.org/confluence/display/c/MEM35-C.+Allocate+sufficient+memory+for+an+object

3 Checks

Incorrect order of network connection operations
Socket is not correctly established due to bad order of connection steps or missing steps

Description

Incorrect order of network connection operations occurs when you perform
operations on a network connection at the wrong point of the connection lifecycle.

Risk

Sending or receiving data to an incorrectly connected socket can cause unexpected
behavior or disclosure of sensitive information.

If you do not connect your socket correctly or change the connection by mistake, you can
send sensitive data to an unexpected port. You can also get unexpected data from an
incorrect socket.

Fix

During socket connection and communication, check the return of each call and the
length of the data.

Before reading, writing, sending, or receiving information, create sockets in this order:

• For a connection-oriented server socket (SOCK_STREAM or SOCK_SEQPACKET):

socket(...);

bind(...);

listen(...);

accept(...);

• For a connectionless server socket (SOCK_DGRAM):

socket(...);

bind(...);

• For a client socket (connection-oriented or connectionless):

socket(...);

3-362

 Incorrect order of network connection operations

connect(...);

Examples

Connecting a Connection-Oriented Server Socket

include <stdio.h>

include <string.h>

include <time.h>

include <arpa/inet.h>

include <unistd.h>

enum { BUF_SIZE=1025 };

volatile int rd;

int stream_socket_server(int argc, char *argv[])

{

 int listenfd = 0, connfd = 0;

 struct sockaddr_in serv_addr;

 char sendBuff[BUF_SIZE];

 time_t ticks;

 struct tm * timeinfo;

 listenfd = socket(AF_INET, SOCK_STREAM, 0);

 memset(&serv_addr, 48, sizeof(serv_addr));

 memset(sendBuff, 48, sizeof(sendBuff));

 serv_addr.sin_family = AF_INET;

 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 serv_addr.sin_port = htons(5000);

 bind(listenfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr));

 listen(listenfd, 10);

 while(1)

 {

 connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);

 ticks = time(NULL);

3-363

3 Checks

 timeinfo = localtime(&ticks);

 strftime (sendBuff,BUF_SIZE,"%I:%M%p.",timeinfo);

 write(listenfd, sendBuff, strlen(sendBuff));

 close(connfd);

 sleep(1);

 }

}

This example creates a connection-oriented network connection. The function calls the
correct functions in the correct order: socket, bind, listen, accept. However, the
program should write to the connfd socket instead of the listenfd socket.

Correction — Use Safe Socket

One possible correction is to write to the connfd function instead of the listenfd
socket.

include <stdio.h>

include <string.h>

include <time.h>

include <arpa/inet.h>

include <unistd.h>

enum { BUF_SIZE=1025 };

volatile int rd;

int stream_socket_server_good(int argc, char *argv[])

{

 int listenfd = 0, connfd = 0;

 struct sockaddr_in serv_addr;

 char sendBuff[BUF_SIZE];

 time_t ticks;

 struct tm * timeinfo;

 listenfd = socket(AF_INET, SOCK_STREAM, 0);

 memset(&serv_addr, 48, sizeof(serv_addr));

 memset(sendBuff, 48, sizeof(sendBuff));

 serv_addr.sin_family = AF_INET;

 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);

3-364

 Incorrect order of network connection operations

 serv_addr.sin_port = htons(5000);

 bind(listenfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr));

 listen(listenfd, 10);

 while(1)

 {

 connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);

 ticks = time(NULL);

 timeinfo = localtime(&ticks);

 strftime (sendBuff,BUF_SIZE,"%I:%M%p.",timeinfo);

 write(connfd, sendBuff, strlen(sendBuff));

 close(connfd);

 sleep(1);

 }

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: bad_network_connect_order
Impact: Medium

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-666: Operation on Resource in Wrong Phase of Lifetime

Introduced in R2015b

3-365

http://cwe.mitre.org/data/definitions/666.html

3 Checks

Umask used with chmod-style arguments
Argument to umask allows external user too much control

Description
Umask used with chmod-style arguments checks for umask commands that have an
argument specified in the style of arguments to chmod.

For new files, the umask value specifies which permissions not to set, in other words
which permissions to remove. The umask argument is bitwise-negated and then applied
to new file permissions.

In contrast, chmod sets the permissions as you specify them.

Risk

If you use chmod-style arguments, you specify opposite permissions of what you want.
This mistake can give external users unintended read/write access to new files and
folders.

Fix

Set the umask so that the user (u) has fewer permissions turned off than the group (g).
Set umask so that the group has fewer permissions turned off than other users (o), or u
<= g <= o.

You can see the umask value by calling,

umask

or the symbolic value by calling,

umask -S

Examples

Setting the Default Mask

#include <stdio.h>

3-366

 Umask used with chmod-style arguments

#include <assert.h>

#include <sys/types.h>

#include <sys/stat.h>

typedef mode_t (*umask_func)(mode_t);

const mode_t default_mode = (

 S_IRUSR /* 00400 */

 | S_IWUSR /* 00200 */

 | S_IRGRP /* 00040 */

 | S_IWGRP /* 00020 */

 | S_IROTH /* 00004 */

 | S_IWOTH /* 00002 */

); /* 00666 (i.e. -rw-rw-rw-) */

static void my_umask(mode_t mode)

{

 umask(mode);

}

int umask_use(mode_t m)

{

 my_umask(default_mode);

 return 0;

}

This example uses a function called my_umask to set the default mask mode. However,
the default_mode variable gives the permissions 666 or -rw-rw-rw. umask negates
this value. However, this negation means the default mask mode turns off read/write
permissions for the user, group users, and other outside users.

Correction — Negate Preferred Permissions

One possible correction is to negate the default_mode argument to my_umask. This
correction nullifies the negation umask for new files.

#include <stdio.h>

#include <assert.h>

#include <sys/types.h>

#include <sys/stat.h>

typedef mode_t (*umask_func)(mode_t);

const mode_t default_mode = (

3-367

3 Checks

 S_IRUSR /* 00400 */

 | S_IWUSR /* 00200 */

 | S_IRGRP /* 00040 */

 | S_IWGRP /* 00020 */

 | S_IROTH /* 00004 */

 | S_IWOTH /* 00002 */

); /* 00666 (i.e. -rw-rw-rw-) */

static void my_umask(mode_t mode)

{

 umask(mode);

}

int umask_use(mode_t m)

{

 my_umask(~default_mode);

 return 0;

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: bad_umask
Impact: Low

See Also
Vulnerable permission assignments

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• umask — Linux Manual Page
• CWE-560: Use of umask() with chmod-style Argument
• CERT C — FIO06-C: Create files with appropriate access permissions

3-368

http://man7.org/linux/man-pages/man2/umask.2.html
http://cwe.mitre.org/data/definitions/560.html
https://www.securecoding.cert.org/confluence/display/c/FIO06-C.+Create+files+with+appropriate+access+permissions

 Umask used with chmod-style arguments

Introduced in R2015b

3-369

3 Checks

File manipulation after chroot() without
chdir(“/”)

Path-related vulnerabilities for file manipulated after call to chroot

Description

File manipulation after chroot() without chdir(“/”) detects access to the file
system outside of the jail created by chroot. By calling chroot, you create a file system
jail that confines access to a specific file subsystem. However, this jail is ineffective if you
do not call chdir("/").

Risk

If you do not call chdir("/") after creating a chroot jail, file manipulation functions
that takes a path as an argument can access files outside of the jail. An attacker can
still manipulate files outside the subsystem that you specified, making the chroot jail
ineffective.

Fix

After calling chroot, call chdir("/") to make your chroot jail more secure.

Examples

Open File in chroot-jail

#include <unistd.h>

#include <stdio.h>

const char root_path[] = "/var/ftproot";

const char log_path[] = "file.log";

FILE* chrootmisuse() {

 FILE* res;

 chroot(root_path);

 chdir("base");

3-370

 File manipulation after chroot() without chdir(“/”)

 res = fopen(log_path, "r");

 return res;

}

This example uses chroot to create a chroot-jail. However, to use the chroot jail
securely, you must call chdir("\") afterward. This example calls chdir("base"),
which is not equivalent. Bug Finder also flags fopen because fopen opens a file in the
vulnerable chroot-jail.

Correction — Call chdir("/")

Before opening files, call chdir("/").

#include <unistd.h>

#include <stdio.h>

const char root_path[] = "/var/ftproot";

const char log_path[] = "file.log";

FILE* chrootmisuse() {

 FILE* res;

 chroot(root_path);

 chdir("/");

 res = fopen(log_path, "r");

 return res;

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: chroot_misuse
Impact: Medium

See Also
Umask used with chmod-style arguments | Vulnerable path manipulation

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

3-371

3 Checks

External Websites
• CWE-243: Creation of chroot Jail Without Changing Working Directory
• CERT C — POS05-C: Limit access to files by creating a jail

Introduced in R2015b

3-372

http://cwe.mitre.org/data/definitions/243.html
https://www.securecoding.cert.org/confluence/display/c/POS05-C.+Limit+access+to+files+by+creating+a+jail

 Vulnerable permission assignments

Vulnerable permission assignments

Argument gives read/write/search permissions to external users

Description

Vulnerable permission assignments looks at functions that can change file
permissions, such as chmod, umask, creat, or open. If the specified permissions allow
unintended actors to modify or read the resource, Bug Finder flags the functions as a
defect.

Risk

If you give outside users or outside groups a wider range or permissions than required,
you potentially expose your sensitive information and your modifications. This defect is
especially dangerous for permissions related to:

• Program configurations
• Program executions
• Sensitive user data

Fix

Set your permissions so that the user (u) has more permissions than the group (g), and so
the group has more permissions than other users (o), or u >= g >= o.

Examples

Create File with Other Permissions

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

3-373

3 Checks

void bug_dangerouspermissions(const char * log_path) {

 mode_t mode = S_IROTH | S_IXOTH | S_IWOTH;

 int fd = creat(log_path, mode);

 if (fd) {

 write(fd, "Hello\n", 6);

 }

 close(fd);

 unlink(log_path);

}

In this example, the log_path file is created with more rights for the other outside
users, than the current user. The permissions are ---------rwx.

Correction — Modify User Permissions

One possible correction is to modify the user permissions for the file. In this correction,
the user has read/write/execute permissions, but other users do not.

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

void corrected_dangerouspermissions(const char * log_path) {

 mode_t mode = S_IRUSR | S_IXUSR | S_IWUSR;

 int fd = creat(log_path, mode);

 if (fd) {

 write(fd, "Hello\n", 6);

 }

 close(fd);

 unlink(log_path);

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: dangerous_permissions
Impact: Medium

3-374

 Vulnerable permission assignments

See Also
Umask used with chmod-style arguments

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-732: Incorrect Permission Assignment for Critical Resource
• CERT C — FIO06-C: Create files with appropriate access permissions

Introduced in R2015b

3-375

http://cwe.mitre.org/data/definitions/732.html
https://www.securecoding.cert.org/confluence/display/c/FIO06-C.+Create+files+with+appropriate+access+permissions

3 Checks

Use of dangerous standard function

Dangerous functions cause possible buffer overflow in destination buffer

Description

The Use of dangerous standard function check highlights uses of functions that
are inherently dangerous or potentially dangerous given certain circumstances. The
following table lists possibly dangerous functions, the risks of using each function, and
what function to use instead.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You
cannot control the length of input
from the console.

fgets

cin Inherently dangerous — You
cannot control the length of input
from the console.

Avoid or prefaces calls to cin
with cin.width.

strcpy Possibly dangerous — If the
source length is greater than the
destination, buffer overflow can
occur.

strncpy

stpcpy Possibly dangerous — If the
source length is greater than the
destination, buffer overflow can
occur.

stpncpy

lstrcpy or
StrCpy

Possibly dangerous — If the
source length is greater than the
destination, buffer overflow can
occur.

StringCbCopy,
StringCchCopy, strncpy,
strcpy_s, or strlcpy

strcat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

strncat, strlcat, or
strcat_s

3-376

 Use of dangerous standard function

Dangerous
Function

Risk Level Safer Function

lstrcat or
StrCat

Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or
strlcat

wcpcpy Possibly dangerous — If the
source length is greater than the
destination, buffer overflow can
occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

wcsncat, wcslcat, or
wcncat_s

wcscpy Possibly dangerous — If the
source length is greater than the
destination, buffer overflow can
occur.

wcsncpy

sprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

snprintf

vsprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

vsnprintf

Risk

These functions can cause buffer overflow, which attackers can use to infiltrate your
program.

3-377

3 Checks

Examples

Using sprintf

#include <stdio.h>

#include <string.h>

#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)

{

 char dst[BUFF_SIZE];

 int r = 0;

 if (sprintf(dst, "%s", str) == 1)

 {

 r += 1;

 dst[BUFF_SIZE-1] = '\0';

 }

 return r;

}

This example function uses sprintf to copy the string str to dst. However, if str is
larger than the buffer, sprintf can cause buffer overflow.

Correction — Use snprintf with Buffer Size

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>

#include <string.h>

#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)

{

 char dst[BUFF_SIZE];

 int r = 0;

3-378

 Use of dangerous standard function

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)

 {

 r += 1;

 dst[BUFF_SIZE-1] = '\0';

 }

 return r;

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: dangerous_std_func
Impact: Low

See Also
Use of obsolete standard function | Unsafe standard function | Invalid use of standard
library string routine

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-242: Use of Inherently Dangerous Function
• CWE-676: Use of Potentially Dangerous Function
• CERT C — API02-C: Functions that read or write to or from an array should take

an argument to specify the source or target size
• CERT C — ENV01-C: Do not make assumptions about the size of an environment

variable
• CERT C — STR07-C: Use the bounds-checking interface for string manipulation
• CERT C — STR08-C: Use managed strings for development of new string

manipulation code

3-379

http://cwe.mitre.org/data/definitions/242.html
http://cwe.mitre.org/data/definitions/676.html
https://www.securecoding.cert.org/confluence/display/c/API02-C.+Functions+that+read+or+write+to+or+from+an+array+should+take+an+argument+to+specify+the+source+or+target+size
https://www.securecoding.cert.org/confluence/display/c/API02-C.+Functions+that+read+or+write+to+or+from+an+array+should+take+an+argument+to+specify+the+source+or+target+size
https://www.securecoding.cert.org/confluence/display/c/ENV01-C.+Do+not+make+assumptions+about+the+size+of+an+environment+variable
https://www.securecoding.cert.org/confluence/display/c/ENV01-C.+Do+not+make+assumptions+about+the+size+of+an+environment+variable
https://www.securecoding.cert.org/confluence/display/c/STR07-C.+Use+the+bounds-checking+interfaces+for+string+manipulation
https://www.securecoding.cert.org/confluence/display/c/STR08-C.+Use+managed+strings+for+development+of+new+string+manipulation+code
https://www.securecoding.cert.org/confluence/display/c/STR08-C.+Use+managed+strings+for+development+of+new+string+manipulation+code

3 Checks

• CERT C — STR31-C: Guarantee that storage for strings has sufficient space for
character data and null terminator

Introduced in R2015b

3-380

https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

 Mismatch between data length and size

Mismatch between data length and size
Data size argument is not computed from actual data length

Description

Mismatch between data length and size looks for memory copying functions such as
memcpy, memset, or memmove. If you do not control the length argument and data buffer
argument properly, Bug Finder raises a defect.

Risk

If an attacker can manipulate the data buffer or length argument, the attacker can cause
buffer overflow by making the actual data size smaller than the length.

This mismatch in length allows the attacker to copy memory past the data buffer to a
new location. If the extra memory contains sensitive information, the attacker can now
access that data.

This defect is similar to the SSL Heartbleed bug.

Fix

When copying or manipulating memory, compute the length argument directly from the
data so that the sizes match.

Examples

Copy Buffer of Data

#include <stdlib.h>

#include <string.h>

typedef struct buf_mem_st {

 char *data;

 size_t max; /* size of buffer */

} BUF_MEM;

3-381

3 Checks

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)

{

 BUF_MEM *os = alpha;

 int num, length;

 if (alpha == 0x0) return 0;

 num = 0;

 length = *(unsigned short *)os->data;

 memcpy(&(beta.data[num]), os->data + 2, length);

 return(1);

}

This function copies the buffer alpha into a buffer beta. However, the length variable
is not related to data+2.

Correction — Check Buffer Length

One possible correction is to check the length of your buffer against the maximum value
minus 2. This check ensures that you have enough space to copy the data to the beta
structure.

#include <stdlib.h>

#include <string.h>

typedef struct buf_mem_st {

 char *data;

 size_t max; /* size of buffer */

} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)

{

 BUF_MEM *os = alpha;

 int num, length;

 if (alpha == 0x0) return 0;

 num = 0;

3-382

 Mismatch between data length and size

 length = *(unsigned short *)os->data;

 if (length<(os->max -2)) {

 memcpy(&(beta.data[num]), os->data + 2, length);

 }

 return(1);

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: data_length_mismatch
Impact: Medium

See Also
Copy of overlapping memory

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-130: Improper Handling of Length Parameter Inconsistency
• CWE-240: Improper Handling of Inconsistent Structural Elements
• CERT C — ARR38-C: Guarantee that library functions do not form invalid pointers

Introduced in R2015b

3-383

http://cwe.mitre.org/data/definitions/130.html
http://cwe.mitre.org/data/definitions/240.html
https://www.securecoding.cert.org/confluence/display/c/ARR38-C.+Guarantee+that+library+functions+do+not+form+invalid+pointers

3 Checks

Function pointer assigned with absolute address
Constant expression is used as function address is vulnerable to code injection

Description

Function pointer assigned with absolute address looks for assignments to function
pointers. If the function pointer is assigned an absolute address, Bug Finder raises a
defect.

Bug Finder considers expressions with any combination of literal constants as an
absolute address. The one exception is when the value of the expression is zero.

Risk

Using a fixed address is not portable because it is possible the address is invalid on other
platforms.

An attacker can inject code at the absolute address, causing your program to execute
arbitrary, possibly malicious, code.

Fix

Do not use an absolute address with function pointers.

Examples

Function Pointer Address Assignment

extern int func0(int i, char c);

typedef int (*FuncPtr) (int, char);

FuncPtr funcptrabsoluteaddr() {

 return (FuncPtr)0x08040000;

}

In this example, the function returns a function pointer to the address 0x08040000. If
an attacker knows this absolute address, an attacker can compromise your program.

3-384

 Function pointer assigned with absolute address

Correction — Function Address

One possible correction is to use the address of an existing function instead.

extern int func0(int i, char c);

typedef int (*FuncPtr) (int, char);

FuncPtr funcptrabsoluteaddr() {

 return &func0;

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: func_ptr_absolute_addr
Impact: Low

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-587: Assignment of a Fixed Address to a Pointer

Introduced in R2015b

3-385

http://cwe.mitre.org/data/definitions/587.html

3 Checks

Use of non-secure temporary file
Temporary generated file name not secure

Description

Use of non-secure temporary file looks for temporary file routines that are not secure.

Risk

If an attacker guesses the file name generated by a standard temporary file routine, the
attacker can:

• Cause a race condition when you generate the file name.
• Precreate a file of the same name, filled with malicious content. If your program reads

the file, the attacker’s file can inject the malicious code.
• Create a symbolic link to a file storing sensitive data. When your program writes to

the temporary file, the sensitive data is deleted.

Fix

To create temporary files, use a more secure standard temporary file routine, such as
mkstemp from POSIX.1-2001.

Also, when creating temporary files with routines that allow flags, such as mkostemp,
use the exclusion flag O_EXCL to avoid race conditions.

Examples

Temp File Created With tempnam

#define _BSD_SOURCE

#define _XOPEN_SOURCE

#define _GNU_SOURCE

#include <stdio.h>

#include <stdlib.h>

3-386

 Use of non-secure temporary file

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

int test_temp()

{

 char tpl[] = "abcXXXXXX";

 char suff_tpl[] = "abcXXXXXXsuff";

 char *filename = NULL;

 int fd;

 filename = tempnam("/var/tmp", "foo_");

 if (filename != NULL)

 {

 printf("generated tmp name (%s) in (%s:%s:%s)\n",

 filename, getenv("TMPDIR") ? getenv("TMPDIR") : "$TMPDIR",

 "/var/tmp", P_tmpdir);

 fd = open(filename, O_CREAT, S_IRWXU|S_IRUSR);

 if (fd != -1)

 {

 close(fd);

 unlink(filename);

 return 1;

 }

 }

 return 0;

}

In this example, Bug Finder flags open because it tries to use an unsecure temporary
file. The file is opened without exclusive privileges. An attacker can access the file
causing various risks.

Correction — Add O_EXCL Flag

One possible correction is to add the O_EXCL flag when you open the temporary file.

#define _BSD_SOURCE

#define _XOPEN_SOURCE

#define _GNU_SOURCE

#include <stdio.h>

3-387

3 Checks

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

int test_temp()

{

 char tpl[] = "abcXXXXXX";

 char suff_tpl[] = "abcXXXXXXsuff";

 char *filename = NULL;

 int fd;

 filename = tempnam("/var/tmp", "foo_");

 if (filename != NULL)

 {

 printf("generated tmp name (%s) in (%s:%s:%s)\n",

 filename, getenv("TMPDIR") ? getenv("TMPDIR") : "$TMPDIR",

 "/var/tmp", P_tmpdir);

 fd = open(filename, O_CREAT|O_EXCL, S_IRWXU|S_IRUSR);

 if (fd != -1)

 {

 close(fd);

 unlink(filename);

 return 1;

 }

 }

 return 0;

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: non_secure_temp_file
Impact: High

See Also
Data race

3-388

 Use of non-secure temporary file

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-377: Insecure Temporary File
• CERT C — FIO03-C: Do not make assumptions about fopen() and file creation
• CERT C — FIO21-C: Do not create temporary files in shared directories

Introduced in R2015b

3-389

http://cwe.mitre.org/data/definitions/377.html
https://www.securecoding.cert.org/confluence/display/c/FIO03-C.+Do+not+make+assumptions+about+fopen%28%29+and+file+creation
https://www.securecoding.cert.org/confluence/display/c/FIO21-C.+Do+not+create+temporary+files+in+shared+directories

3 Checks

Use of obsolete standard function

Obsolete routines can cause security vulnerabilities and portability issues

Description

Use of obsolete standard function detects calls to standard function routines that are
considered legacy, removed, deprecated, or obsolete by C/C++ coding standards.

Obsolete Function Standards Risk Replacement
Function

asctime Deprecated in POSIX.1–2008 Not thread-safe. strftime or
asctime_s

asctime_r Deprecated in POSIX.1–2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

bcmp Deprecated in 4.3BSD

Marked as legacy in POSIX.1–
2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcmp

bcopy Deprecated in 4.3BSD

Marked as legacy in POSIX.1–
2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcpy or
memmove

brk and sbrk Marked as legacy in SUSv2 and
POSIX.1-2001.

 malloc

bsd_signal Removed in POSIX.1–2008 sigaction

bzero Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 memset

ctime Deprecated in POSIX.1–2008 Not thread-safe. strftime or
asctime_s

3-390

 Use of obsolete standard function

Obsolete Function Standards Risk Replacement
Function

ctime_r Deprecated in POSIX.1–2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

cuserid Removed in POSIX.1-2001. Not reentrant. Precise
functionality not
standardized causing
portability issues.

getpwuid

ecvt and fcvt Marked as legacy in POSIX.1–
2001. Removed in POSIX.1–
2008

Not reentrant snprintf

ecvt_r and fcvt_r Marked as legacy in POSIX.1–
2001. Removed in POSIX.1–
2008

 snprintf

ftime Removed in POSIX.1–2008 time,
gettimeofday,
clock_gettime

gamma, gammaf,
gammal

Function not specified in any
standard because of historical
variations

Portability issues. tgamma, lgamma

gcvt Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 snprintf

getcontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

getdtablesize BSD API function not included
in POSIX.1-2001

Portability issues. sysconf(_SC_OPEN_MAX)

gethostbyaddr Removed in POSIX.1–2008 Not reentrant getaddrinfo

gethostbyname Removed in POSIX.1–2008 Not reentrant getnameinfo

getpagesize BSD API function not included
in POSIX.1-2001

Portability issues. sysconf(_SC_PAGESIZE)

getpass Removed in POSIX.1-2001. Not reentrant. getpwuid

getw Not present in POSIX.1-2001. fread

3-391

3 Checks

Obsolete Function Standards Risk Replacement
Function

getwd Marked legacy in POSIX.1–
2001. Removed in POSIX.1–
2008.

 getcwd

index Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 strchr

makecontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

memalign Appears in SunOS 4.1.3. Not in
4.4 BSD or POSIX.1–2001

 posix_memalign

mktemp Removed in POSIX.1-2008. Generated names are
predictable and can
cause a race condition.

mkstemp removes
race risk

pthread_attr_

getstackaddr and
pthread_attr_

setstackaddr

 Ambiguities in the
specification of the
stackaddr attribute
cause portability
issues

pthread_attr_

getstack and
pthread_attr_

setstack

putw Not present in POSIX.1-2001. Portability issues. fwrite

qecvt and qfcvt Marked as legacy in
POSIX.1-2001, removed in
POSIX.1–2008

 snprintf

qecvt_r and
qfcvt_r

Marked as legacy in
POSIX.1-2001, removed in
POSIX.1–2008

 snprintf

rand_r Marked as obsolete in
POSIX.1–2008

re_comp BSD API function Portability issues regcomp

re_exes BSD API function Portability issues regexec

rindex Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 strrchr

3-392

 Use of obsolete standard function

Obsolete Function Standards Risk Replacement
Function

scalb Removed in POSIX.1–2008 scalbln,
scalblnf, or
scalblnl

sigblock 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigmask 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigsetmask 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigstack Interface is obsolete and
not implemented on most
platforms.

Portability issues. sigaltstack

sigvec 4.3BSD signal API whose origin
is unclear

 sigaction

swapcontext Removed in POSIX.1-2008 Portability issues. Use POSIX
threads.

tmpnam and
tmpnam_r

Marked as obsolete in
POSIX.1-2008.

This function
generates a different
string each time
it is called, up to
TMP_MAX times.
If it is called more
than TMP_MAX
times, the behavior
is implementation-
defined.

mkstemp, tmpfile

ttyslot Removed in POSIX.1-2001.
ualarm Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

Errors are under-
specified

setitimer

or POSIX
timer_create

usleep Removed in POSIX.1-2008. nanosleep

3-393

3 Checks

Obsolete Function Standards Risk Replacement
Function

utime SVr4, POSIX.1-2001.
POSIX.1-2008 marks as
obsolete.

valloc Marked as obsolete in 4.3BSD.

Marked as legacy in SUSv2.

Removed from POSIX.1-2001

 posix_memalign

vfork Removed from POSIX.1-2008 Under-specified in
previous standards.

fork

wcswcs This function was not included
in the final ISO/IEC 9899:1990/
Amendment 1:1995 (E).

 wcsstr

WinExec WinAPI provides this function
only for 16–bit Windows
compatibility.

 CreateProcess

LoadModule WinAPI provides this function
only for 16–bit Windows
compatibility.

 CreateProcess

Examples

Printing Out Time

#include <stdio.h>

#include <time.h>

void timecheck_bad(int argc, char *argv[])

{

 time_t ticks;

 ticks = time(NULL);

 printf("%.24s\r\n", ctime(&ticks));

}

3-394

 Use of obsolete standard function

In this example, the function ctime formats the current time and prints it out. However,
ctime was removed after C99 because it does not work on multithreaded programs.

Correction — Different Time Function

One possible correction is to use strftime instead because this function uses a set
buffer size.

#include <stdio.h>

#include <string.h>

#include <time.h>

void timecheck_good(int argc, char *argv[])

{

 char outBuff[1025];

 time_t ticks;

 struct tm * timeinfo;

 memset(outBuff, 0, sizeof(outBuff));

 ticks = time(NULL);

 timeinfo = localtime(&ticks);

 strftime(outBuff,sizeof(outBuff),"%I:%M%p.",timeinfo);

 fprintf(stdout, outBuff);

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: obsolete_std_func
Impact: Low

See Also
Use of dangerous standard function | Unsafe standard function | Invalid use of standard
library string routine

More About
• “Navigate to Root Cause of Defect”

3-395

3 Checks

• “Review and Fix Results”

External Websites
• CWE-477: Use of Obsolete Functions
• CERT C — MSC24-C: Do not use deprecated or obsolescent functions
• CERT C — MSC33-C: Do not pass invalid data to the asctime() function
• CERT C — POS33-C: Do not use vfork()

Introduced in R2015b

3-396

http://cwe.mitre.org/data/definitions/477.html
https://www.securecoding.cert.org/confluence/display/c/MSC24-C.+Do+not+use+deprecated+or+obsolescent+functions
https://www.securecoding.cert.org/confluence/display/c/MSC33-C.+Do+not+pass+invalid+data+to+the+asctime%28%29+function
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1703954

 Vulnerable path manipulation

Vulnerable path manipulation
Path argument with /../, /abs/path/, or other unsecure elements

Description

Vulnerable path manipulation detects relative or absolute path traversals. If the path
traversal contains a tainted source, or you use the path to open/create files, Bug Finder
raises a defect.

Risk

Relative path elements, such as ".." can resolve to locations outside the intended folder.
Absolute path elements, such as "/abs/path" can also resolve to locations outside the
intended folder.

An attacker can use these types of path traversal elements to traverse to the rest of the
file system and access other files or folders.

Fix

Avoid vulnerable path traversal elements such as /../ and /abs/path/. Use fixed file
names and locations wherever possible.

Examples

Relative Path Traversal

include <stdio.h>

include <string.h>

include <wchar.h>

include <sys/types.h>

include <sys/stat.h>

include <fcntl.h>

include <unistd.h>

include <stdlib.h>

define BASEPATH "/tmp/"

3-397

3 Checks

define FILENAME_MAX 512

static void Relative_Path_Traversal(void)

{

 char * data;

 char data_buf[FILENAME_MAX] = BASEPATH;

 char sub_buf[FILENAME_MAX];

 if (fgets(sub_buf, FILENAME_MAX, stdin) == NULL) exit (1);

 data = data_buf;

 strcat(data, sub_buf);

 FILE *file = NULL;

 file = fopen(data, "wb+");

 if (file != NULL) fclose(file);

}

int path_call(void){

 Relative_Path_Traversal();

}

This example opens a file from "/tmp/", but uses a relative path to the file. An external
user can manipulate this relative path when fopen opens the file.

Correction — Use Fixed File Name

One possible correction is to use a fixed file name instead of a relative path. This example
uses file.txt.

include <stdio.h>

include <string.h>

include <wchar.h>

include <sys/types.h>

include <sys/stat.h>

include <fcntl.h>

include <unistd.h>

include <stdlib.h>

define BASEPATH "/tmp/"

define FILENAME_MAX 512

static void Relative_Path_Traversal(void)

{

 char * data;

 char data_buf[FILENAME_MAX] = BASEPATH;

3-398

 Vulnerable path manipulation

 data = data_buf;

 /* FIX: Use a fixed file name */

 strcat(data, "file.txt");

 FILE *file = NULL;

 file = fopen(data, "wb+");

 if (file != NULL) fclose(file);

}

int path_call(void){

 Relative_Path_Traversal();

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: path_traversal
Impact: Low

See Also
Use of path manipulation function without maximum sized buffer checking

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-22: Improper Limitation of a Pathname to a Restricted Directory
• CWE-23: Relative Path Traversal
• CWE-36: Absolute Path Traversal
• CERT C — FIO02-C: Canonicalize path names originating from tainted sources

Introduced in R2015b

3-399

http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/23.html
http://cwe.mitre.org/data/definitions/36.html
https://www.securecoding.cert.org/confluence/display/c/FIO02-C.+Canonicalize+path+names+originating+from+tainted+sources

3 Checks

Deterministic random output from constant seed
Seeding routine uses a constant seed making the output deterministic

Description

Deterministic random output from constant seed detects random standard
functions that when given a constant seed, have deterministic output.

Risk

When some random functions, such as srand, srandom, and initstate, have constant
seeds, the results produce the same output every time that your program is run. A hacker
can disrupt your program if they know how your program behaves.

Fix

Use a different random standard function or use a nonconstant seed.

Some standard random routines are inherently cryptographically weak, and should not
be used for security purposes.

Examples

Random Number Generator Initialization

#include <stdlib.h>

void random_num(void)

{

 srand(12345U);

 /* ... */

}

This example initializes a random number generator using srand with a constant seed.
The random number generation is deterministic, making this function cryptographically
weak.

3-400

 Deterministic random output from constant seed

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define _CRT_RAND_S

#include <stdlib.h>

#include <stdio.h>

unsigned int random_num_time(void)

{

 unsigned int number;

 errno_t err;

 err = rand_s(&number);

 if(err != 0)

 {

 return number;

 }

 else

 {

 return err;

 }

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: rand_seed_constant
Impact: Medium

See Also
Predictable random output from predictable seed | Unsafe standard encryption function
| Vulnerable pseudo-random number generator

3-401

3 Checks

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-336: Same Seed in PRNG
• CWE-330: Use of Insufficiently Random Values
• CERT C — MSC32-C: Properly seed pseudorandom number generators

Introduced in R2015b

3-402

http://cwe.mitre.org/data/definitions/336.html
http://cwe.mitre.org/data/definitions/330.html
https://www.securecoding.cert.org/confluence/display/c/MSC32-C.+Properly+seed+pseudorandom+number+generators

 Predictable random output from predictable seed

Predictable random output from predictable seed
Seeding routine uses a predictable seed making the output predictable

Description

Predictable random output from predictable seed looks for random standard
functions that use a nonconstant but predictable seed. Examples of predictable seed
generators are time, gettimeofday, and getpid.

Risk

When you use predictable seed values for random number generation, your random
numbers are also predictable. A hacker can disrupt your program if they know how your
program behaves.

Fix

You can use a different function to generate less predictable seeds.

You can also use a different random number generator that does not require a seed. For
example, the Windows API function rand_s seeds itself by default. It uses information
from the entire system, for example, system time, thread ids, system counter, and
memory clusters. This information is more random and a user cannot access this
information.

Some standard random routines are inherently cryptographically weak, and should not
be used for security purposes.

Examples

Seed as an Argument

#include <stdlib.h>

#include <time.h>

3-403

3 Checks

void seed_rng(int seed)

{

 srand(seed);

}

int generate_num(void)

{

 seed_rng(time(NULL) + 3);

 /* ... */

}

This example uses srand to start the random number generator with seed as the seed.
However, seed is predictable because the function time generates it. So, an attacker can
predict the random numbers generated by srand.

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define _CRT_RAND_S

#include <stdlib.h>

#include <stdio.h>

#include <errno.h>

int generate_num(void)

{

 unsigned int number;

 errno_t err;

 err = rand_s(&number);

 if(err != 0)

 {

 return number;

 }

 else

 {

 return err;

 }

}

3-404

 Predictable random output from predictable seed

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: rand_seed_predictable
Impact: Medium

See Also
Deterministic random output from constant seed | Unsafe standard encryption function
| Vulnerable pseudo-random number generator

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-337: Predictable Seed in PRNG
• CWE-330: Use of Insufficiently Random Values
• CERT C — MSC32-C: Properly seed pseudorandom number generators

Introduced in R2015b

3-405

http://cwe.mitre.org/data/definitions/337.html
http://cwe.mitre.org/data/definitions/330.html
https://www.securecoding.cert.org/confluence/display/c/MSC32-C.+Properly+seed+pseudorandom+number+generators

3 Checks

Execution of a binary from a relative path can be
controlled by an external actor

Command with relative path is vulnerable to malicious attack

Description

Execution of a binary from a relative path can be controlled by an external
actor detects calls to an external command. If the call uses a relative path or no path to
call the external command, Bug Finder flags the call as a defect.

This defect also finds results that the Execution of externally controlled command
defect checker finds.

Risk

By using a relative path or no path to call an external command, your program uses an
unsafe search process to find the command. An attacker can control the search process
and replace the intended command with a command of their own.

Fix

When you call an external command, specify the full path.

Examples

Call Command with Relative Path

define _GNU_SOURCE

include <sys/types.h>

include <sys/socket.h>

include <unistd.h>

include <stdio.h>

include <stdlib.h>

3-406

 Execution of a binary from a relative path can be controlled by an external actor

include <wchar.h>

include <string.h>

define MAX_BUFFER 100

void rel_path()

{

 char * data;

 char data_buf[MAX_BUFFER] = "";

 data = data_buf;

 strcpy(data, "ls -la");

 FILE *pipe;

 pipe = popen(data, "wb");

 if (pipe != NULL) pclose(pipe);

}

In this example, Bug Finder flags popen because it tries to call ls -la using a relative
path. An attacker can manipulate the command to use a malicious version.

Correction — Use Full Path

One possible correction is to use the full path when calling the command.

define _GNU_SOURCE

include <sys/types.h>

include <sys/socket.h>

include <unistd.h>

include <stdio.h>

include <stdlib.h>

include <wchar.h>

include <string.h>

define MAX_BUFFER 100

void rel_path()

{

 char * data;

 char data_buf[MAX_BUFFER] = "";

 data = data_buf;

 strcpy(data, "/usr/bin/ls -la");

 FILE *pipe;

 pipe = popen(data, "wb");

 if (pipe != NULL) pclose(pipe);

}

3-407

3 Checks

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: relative_path_cmd
Impact: Medium

See Also
Load of library from a relative path can be controlled by an external actor | Vulnerable
path manipulation | Execution of externally controlled command | Command executed
from externally controlled path

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-114: Process Control
• CWE-427: Uncontrolled Search Path Element

Introduced in R2015b

3-408

http://cwe.mitre.org/data/definitions/114.html
http://cwe.mitre.org/data/definitions/427.html

 Load of library from a relative path can be controlled by an external actor

Load of library from a relative path can be
controlled by an external actor
Library loaded with relative path is vulnerable to malicious attacks

Description

Load of library from a relative path can be controlled by an external actor
detects library loading routines that load an external library. If you load the library using
a relative path or no path, Bug Finder flags the loading routine as a defect.

Risk

By using a relative path or no path to load an external library, your program uses an
unsafe search process to find the library. An attacker can control the search process and
replace the intended library with a library of their own.

Fix

When you load an external library, specify the full path.

Examples

Open Library with Library Name

#include <dlfcn.h>

#include <stdlib.h>

#include <string.h>

#include <malloc.h>

#include <stdio.h>

void relative_path()

{

 dlopen("liberty.dll",RTLD_LAZY);

}

3-409

3 Checks

In this example, dlopen opens the liberty library by calling only the name of the
library. However, this call to the library uses a relative path to find the library, which is
unsafe.

Correction — Use Full Path to Library

One possible correction is to use the full path to the library when you load it into your
program.

#include <dlfcn.h>

#include <stdlib.h>

#include <string.h>

#include <malloc.h>

#include <stdio.h>

void relative_path()

{

 dlopen("/home/my_libs/library/liberty.dll",RTLD_LAZY);

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: relative_path_lib
Impact: Medium

See Also
Execution of a binary from a relative path can be controlled by an external actor |
Vulnerable path manipulation | Library loaded from externally controlled path

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-114: Process Control

3-410

http://cwe.mitre.org/data/definitions/114.html

 Load of library from a relative path can be controlled by an external actor

• CWE-427: Uncontrolled Search Path Element
• CERT C — WIN00-C: Be specific when dynamically loading libraries

Introduced in R2015b

3-411

http://cwe.mitre.org/data/definitions/427.html
https://www.securecoding.cert.org/confluence/display/c/WIN00-C.+Be+specific+when+dynamically+loading+libraries

3 Checks

Sensitive data printed out
Function prints sensitive data

Description

Sensitive data printed out detects print functions, such as stdout or stderr, that
print sensitive information.

Risk

Printing sensitive information, such as passwords or user information, allows an attacker
additional access to the information.

Fix

One fix for this defect is to not print out sensitive information.

If you are saving your logfile to an external file, set the file permissions so that attackers
cannot access the logfile information.

Examples

Printing Passwords

#include <sys/types.h>

#include <pwd.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

extern void verify_null(const char* buf);

void bug_sensitivedataprint(const char * my_user) {

 struct passwd* result, pwd;

 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);

 char buf[1024] = "";

 getpwnam_r(my_user, &pwd, buf, bufsize, &result);

3-412

 Sensitive data printed out

 puts("Name\n");

 puts(pwd.pw_name);

 puts("PassWord\n");

 puts(pwd.pw_passwd);

 memset(buf, 0, sizeof(buf));

 verify_null(buf);

}

In this example, Bug Finder flags puts for printing out the password pwd.pw_passwd.

Correction — Obfuscate the Password

One possible correction is to obfuscate the password information so that the information
is not visible.

#include <sys/types.h>

#include <pwd.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

extern void verify_null(const char* buf);

void sensitivedataprint(const char * my_user) {

 struct passwd* result, pwd;

 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);

 char buf[1024] = "";

 getpwnam_r(my_user, &pwd, buf, bufsize, &result);

 puts("Name\n");

 puts(pwd.pw_name);

 puts("PassWord\n");

 puts("XXXXXXXX\n");

 memset(buf, 0, sizeof(buf));

 verify_null(buf);

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: sensitive_data_print
Impact: Medium

3-413

3 Checks

See Also
Sensitive heap memory not cleared before release | Uncleared sensitive data in stack

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-532: Information Exposure Through Log Files
• CWE-534: Information Exposure Through Debug Log Files
• CWE-535: Information Exposure Through Shell Error Message
• CERT C — MEM06-C: Ensure that sensitive data is not written out to disk

Introduced in R2015b

3-414

http://cwe.mitre.org/data/definitions/532.html
http://cwe.mitre.org/data/definitions/534.html
http://cwe.mitre.org/data/definitions/535.html
https://www.securecoding.cert.org/confluence/display/c/MEM06-C.+Ensure+that+sensitive+data+is+not+written+out+to+disk

 Sensitive heap memory not cleared before release

Sensitive heap memory not cleared before release
Sensitive data not cleared or released by memory routine

Description

Sensitive heap memory not cleared before release detects dynamically allocated
memory containing sensitive data. If you do not clear the sensitive data when you free
the memory, Bug Finder raises a defect on the free function.

Risk

If the memory zone is reallocated, an attacker can still inspect the sensitive data in the
old memory zone.

Fix

Before calling free, clear out the sensitive data using memset or SecureZeroMemory.

Examples

Sensitive Buffer Freed, Not Cleared

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <pwd.h>

void sensitiveheapnotcleared(const char * my_user) {

 struct passwd* result, pwd;

 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);

 char* buf = (char*) malloc(1024);

 getpwnam_r(my_user, &pwd, buf, bufsize, &result);

 free(buf);

}

3-415

3 Checks

In this example, the function uses a buffer of passwords and frees the memory before the
end of the function. However, the data in the memory is not cleared by using the free
command.

Correction — Nullify Data

One possible correction is to write over the data to clear out the sensitive information.
This example uses memset to write over the data with zeros.

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <pwd.h>

#include <assert.h>

#define isNull(arr) for(int i=0; i<(sizeof(arr)/sizeof(arr[0])); i++) assert(arr[i]==0)

void sensitiveheapnotcleared(const char * my_user) {

 struct passwd* result, pwd;

 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);

 char* buf = (char*) malloc(1024);

 if (buf) {

 getpwnam_r(my_user, &pwd, buf, bufsize, &result);

 memset(buf, 0, (size_t)1024);

 isNull(buf);

 free(buf);

 }

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: sensitive_heap_not_cleared
Impact: Medium

See Also
Uncleared sensitive data in stack | Sensitive data printed out

3-416

 Sensitive heap memory not cleared before release

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-244: Improper Clearing of Heap Memory Before Release
• CERT C — MEM03-C: Clear sensitive information stored in reusable resources
• CERT C — MSC18-C: Be careful while handling sensitive data, such as passwords,

in program code

Introduced in R2015b

3-417

http://cwe.mitre.org/data/definitions/244.html
https://www.securecoding.cert.org/confluence/display/c/MEM03-C.+Clear+sensitive+information+stored+in+reusable+resources
https://www.securecoding.cert.org/confluence/display/c/MSC18-C.+Be+careful+while+handling+sensitive+data%2C+such+as+passwords%2C+in+program+code
https://www.securecoding.cert.org/confluence/display/c/MSC18-C.+Be+careful+while+handling+sensitive+data%2C+such+as+passwords%2C+in+program+code

3 Checks

Uncleared sensitive data in stack
Variable in stack is not cleared and contains sensitive data

Description

Uncleared sensitive data in stack detects static memory containing sensitive data.
If you do not clear the sensitive data from your stack before exiting the function or
program, Bug Finder raises a defect on the last curly brace.

Risk

Leaving sensitive information in your stack, such as passwords or user information,
allows an attacker additional access to the information after your program has ended.

Fix

Before exiting a function or program, clear out the memory zones that contain sensitive
data by using memset or SecureZeroMemory.

Examples

Static Buffer of Password Information

#include <unistd.h>

#include <sys/types.h>

#include <pwd.h>

void bug_sensitivestacknotcleared(const char * my_user) {

 struct passwd* result, pwd;

 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);

 char buf[1024] = "";

 getpwnam_r(my_user, &pwd, buf, bufsize, &result);

}

In this example, a static buffer is filled with password information. The program frees
the stack memory at the end of the program. However, the data is still accessible from
the memory.

3-418

 Uncleared sensitive data in stack

Correction — Clear Memory

One possible correction is to write over the memory before exiting the function. This
example uses memset to clear the data from the buffer memory.

#include <unistd.h>

#include <string.h>

#include <sys/types.h>

#include <pwd.h>

#include <assert.h>

#define isNull(arr) for(int i=0; i<(sizeof(arr)/sizeof(arr[0])); i++) assert(arr[i]==0)

void corrected_sensitivestacknotcleared(const char * my_user) {

 struct passwd* result, pwd;

 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);

 char buf[1024] = "";

 getpwnam_r(my_user, &pwd, buf, bufsize, &result);

 memset(buf, 0, (size_t)1024);

 isNull(buf);

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: sensitive_stack_not_cleared
Impact: Medium

See Also
Sensitive heap memory not cleared before release | Sensitive data printed out

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-226: Sensitive Information Uncleared Before Release

3-419

http://cwe.mitre.org/data/definitions/226.html

3 Checks

• CERT C — MEM03-C: Clear sensitive information stored in reusable resources
• CERT C — MSC18-C: Be careful while handling sensitive data, such as passwords,

in program code

Introduced in R2015b

3-420

https://www.securecoding.cert.org/confluence/display/c/MEM03-C.+Clear+sensitive+information+stored+in+reusable+resources
https://www.securecoding.cert.org/confluence/display/c/MSC18-C.+Be+careful+while+handling+sensitive+data%2C+such+as+passwords%2C+in+program+code
https://www.securecoding.cert.org/confluence/display/c/MSC18-C.+Be+careful+while+handling+sensitive+data%2C+such+as+passwords%2C+in+program+code

 Array access with tainted index

Array access with tainted index
Array index from unsecure source possibly outside array bounds

Description

Array access with tainted index detects reading or writing to an array by using a
tainted index that has not been validated.

Risk

The index might be outside the valid array range. If the tainted index is outside the
array range, it can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted

buffer.

An attacker can use an invalid read or write operation create to problems in your
program.

Fix

Before using the index to access the array, validate the index value to make sure that it
is inside the array range.

Examples

Use Index to Return Buffer Value

#define SIZE100 100

extern int tab[SIZE100];

int taintedarrayindex(int num) {

3-421

3 Checks

 return tab[num];

}

In this example, the index num accesses the array tab. The function does not check to see
if num is inside the range of tab.

Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#define SIZE100 100

extern int tab[SIZE100];

int taintedarrayindex(int num) {

 if (num >= 0 && num < SIZE100) {

 return tab[num];

 } else {

 return -9999;

 }

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_array_index
Impact: Medium

See Also
Loop bounded with tainted value | Pointer dereference with tainted offset | Tainted size
of variable length array

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-121: Stack-based Buffer Overflow

3-422

http://cwe.mitre.org/data/definitions/121.html

 Array access with tainted index

• CWE-124: Buffer Underwrite
• CWE-125: Out-of-bounds Read
• CWE-129: Improper Validation of Array Index
• CERT C — API02-C: Functions that read or write to or from an array should take

an argument to specify the source or target size
• CERT C — ARR30-C: Do not form or use out-of-bounds pointers or array subscripts

Introduced in R2015b

3-423

http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/129.html
https://www.securecoding.cert.org/confluence/display/c/API02-C.+Functions+that+read+or+write+to+or+from+an+array+should+take+an+argument+to+specify+the+source+or+target+size
https://www.securecoding.cert.org/confluence/display/c/API02-C.+Functions+that+read+or+write+to+or+from+an+array+should+take+an+argument+to+specify+the+source+or+target+size
https://www.securecoding.cert.org/confluence/display/c/ARR30-C.+Do+not+form+or+use+out-of-bounds+pointers+or+array+subscripts

3 Checks

Use of externally controlled environment variable
Value of environment variable from an unsecure source

Description

Use of externally controlled environment variable checks for functions that add
or change environment variables, such as putenv and setenv. If the new environment
variable value is from an unsecure source, Polyspace raises a defect on the function or
function pointer.

Risk

If the environment variable is tainted, an attacker can control your system settings. This
control can disrupt an application or service in potentially malicious ways.

Fix

Before using the new environment variable, check its value to avoid giving control to
external users.

Examples

Set Path in Environment

#define _XOPEN_SOURCE

#define _GNU_SOURCE

#include "stdlib.h"

void taintedenvvariable(char* path)

{

 putenv(path);

}

In this example, putenv changes an environment variable. The path path has not been
checked to make sure that it is the intended path.

3-424

 Use of externally controlled environment variable

Correction — Sanitize Path

One possible correction is to sanitize the path, checking that it matches what you expect.

#define _XOPEN_SOURCE

#define _GNU_SOURCE

#define SIZE128 128

#include "stdlib.h"

#include "string.h"

/* Function to sanitize a string */

int sanitize_str(char* str, size_t n) {

 int res = 0;

 if (str && n > 0 && n < SIZE128) {

 /* string is not NULL, with size between 1 and max */

 str[n-1] = '\0'; /* Add a null char at end of string */

 /* Tainted pointer detected above, used as "firewall" */

 res = 1;

 }

 return res;

}

void taintedenvvariable(char* path, size_t n)

{

 if (sanitize_str(path, n))

 {

 unsigned int n2 = strlen("PATH=")+strnlen(path, n);

 char *env_path = (char *)malloc(n2+1);

 if (env_path)

 {

 strcpy(env_path, "PATH=");

 strncat(env_path, path, n2);

 putenv(env_path);

 }

 }

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off

3-425

3 Checks

Command-Line Syntax: tainted_env_variable
Impact: Medium

See Also
Execution of externally controlled command | Host change using externally controlled
elements | Command executed from externally controlled path | Library loaded from
externally controlled path

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-15: External Control of System or Configuration Setting

Introduced in R2015b

3-426

http://cwe.mitre.org/data/definitions/15.html

 Execution of externally controlled command

Execution of externally controlled command
Command argument from an unsecure source vulnerable to operating system command
injection

Description

Execution of externally controlled command checks for commands that are fully or
partially constructed from externally controlled input.

Risk

Attackers can use the externally controlled input as operating system commands, or
arguments to the application. An attacker could read or modify sensitive data can be read
or modified, execute unintended code, or gain access to other aspects of the program.

Fix

Validate the inputs to allow only intended input values. For example, create a whitelist
of acceptable inputs and compare the input against this list.

Examples

Call Argument Command

#define _XOPEN_SOURCE

#define _GNU_SOURCE

#include "stdlib.h"

#include "stdio.h"

#include "string.h"

#include "unistd.h"

#include "dlfcn.h"

#include "limits.h"

enum {

3-427

3 Checks

 SIZE10 = 10,

 SIZE100 = 100,

 SIZE128 = 128

};

void taintedexternalcmd(char* usercmd)

{

 char cmd[SIZE128] = "/usr/bin/cat ";

 strcat(cmd, usercmd);

 system(cmd);

}

This example function calls a command from a user argument without checking the
command variable.

Correction — Use a Predefined Command

One possible correction is to use a switch statement to run a predefined command,
using the user input as the switch variable.

#define _XOPEN_SOURCE

#define _GNU_SOURCE

#include "stdlib.h"

#include "stdio.h"

#include "string.h"

#include "unistd.h"

#include "dlfcn.h"

#include "limits.h"

enum {

 SIZE10 = 10,

 SIZE100 = 100,

 SIZE128 = 128

};

enum { CMD0 = 1, CMD1, CMD2 };

void taintedexternalcmd(int usercmd)

{

 char cmd[SIZE128] = "/usr/bin/cat ";

 switch(usercmd) {

 case CMD0:

 strcat(cmd, "*.c");

3-428

 Execution of externally controlled command

 break;

 case CMD1:

 strcat(cmd, "*.h");

 break;

 case CMD2:

 strcat(cmd, "*.cpp");

 break;

 default:

 strcat(cmd, "*.c");

 }

 system(cmd);

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_external_cmd
Impact: Medium

See Also
Use of externally controlled environment variable | Host change using externally
controlled elements | Command executed from externally controlled path | Library
loaded from externally controlled path | Execution of a binary from a relative path can
be controlled by an external actor

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-77: Improper Neutralization of Special Elements used in a Command
• CWE-78: Improper Neutralization of Special Elements used in an OS Command
• CWE-88: Argument Injection or Modification
• CERT C — ENV33-C: Do not call system()
• CERT C — STR02-C: Sanitize data passed to complex subsystems

3-429

http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/88.html
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2130132
https://www.securecoding.cert.org/confluence/display/c/STR02-C.+Sanitize+data+passed+to+complex+subsystems

3 Checks

Introduced in R2015b

3-430

 Host change using externally controlled elements

Host change using externally controlled elements
Changing host ID from an unsecure source

Description
Host change using externally controlled elements detects uncontrolled
arguments in calls to routines that change the host ID, such as sethostid (Linux) or
SetComputerName (Windows).

Risk

The tainted host ID value can allow external control of system settings. This control
can disrupt services, cause unexpected application behavior, or cause other malicious
intrusions.

Fix

Use caution when changing or editing the host ID. Do not allow user-provided values to
control sensitive data.

Examples

Change Host ID from Function Argument

#include <unistd.h>

void bug_taintedhostid(long userhid) {

 sethostid(userhid);

}

This example sets a new host ID using the argument passed to the function. Before using
the host ID, check the value passed in.

Correction — Predefined Host ID

One possible correction is to change the host ID to a predefined ID. This example uses
the host argument as a switch variable to choose between the different, predefined host
IDs.

3-431

3 Checks

#include <unistd.h>

extern long called_taintedhostid_sanitize(long);

enum { HI0 = 1, HI1, HI2, HI3 };

void taintedhostid(int host) {

 long hid = 0;

 switch(host) {

 case HI0:

 hid = 0x7f0100;

 break;

 case HI1:

 hid = 0x7f0101;

 break;

 case HI2:

 hid = 0x7f0102;

 break;

 case HI3:

 hid = 0x7f0103;

 break;

 default:

 /* do nothing */

 break;

 }

 if (hid > 0) {

 sethostid(hid);

 }

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_hostid
Impact: Medium

See Also
Execution of externally controlled command | Use of externally controlled environment
variable | Host change using externally controlled elements | Command executed from
externally controlled path | Library loaded from externally controlled path

3-432

 Host change using externally controlled elements

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-15: External Control of System or Configuration Setting

Introduced in R2015b

3-433

http://cwe.mitre.org/data/definitions/15.html

3 Checks

Tainted division operand
Division / operands from an unsecure source

Description

Tainted division operand detects division operations where one or both of the integer
operands is from an unsecure source.

Risk

• If the numerator is the minimum possible value and the denominator is -1, your
division operation overflows because the result cannot be represented by the current
variable size.

• If the denominator is zero, your division operation fails possibly causing your program
to crash.

These risks can be used to execute arbitrary code. This code is usually outside the scope
of a program's implicit security policy.

Fix

Before performing the division, validate the values of the operands. Check for
denominators of 0 or -1, and numerators of the minimum integer value.

Examples

Division of Function Arguments

extern void print_int(int);

int taintedintdivision(int usernum, int userden) {

 int r = usernum/userden;

 print_int(r);

 return r;

}

3-434

 Tainted division operand

This example function divides two argument variables, then prints and returns the
result. The argument values are unknown and can cause division by zero or integer
overflow.

Correction — Check Values

One possible correction is to check the values of the numerator and denominator before
performing the division.

#include "limits.h"

extern void print_int(int);

int taintedintdivision(int usernum, int userden) {

 int r = 0;

 if (userden!=0 && !(usernum=INT_MIN && userden==-1)) {

 r = usernum/userden;

 }

 print_int(r);

 return r;

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_int_division
Impact: Low

See Also
Integer division by zero | Float division by zero | Tainted modulo operand

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-369: Divide By Zero

3-435

http://cwe.mitre.org/data/definitions/369.html

3 Checks

• CWE-190: Integer Overflow or Wraparound
• CERT C — INT32-C: Ensure that operations on signed integers do not result in

overflow
• CERT C — INT33-C: Ensure that division and remainder operations do not result

in divide-by-zero errors

Introduced in R2015b

3-436

http://cwe.mitre.org/data/definitions/190.html
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://www.securecoding.cert.org/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
https://www.securecoding.cert.org/confluence/display/c/INT33-C.+Ensure+that+division+and+remainder+operations+do+not+result+in+divide-by-zero+errors
https://www.securecoding.cert.org/confluence/display/c/INT33-C.+Ensure+that+division+and+remainder+operations+do+not+result+in+divide-by-zero+errors

 Tainted modulo operand

Tainted modulo operand
Remainder % operands are from an unsecure source

Description

Tainted modulo operand checks the operands of remainder % operations. Bug Finder
flags modulo operations with one or more tainted operands.

Risk

• If the second remainder operand is zero, your remainder operation fails, causing your
program to crash.

• If the second remainder operand is -1, your remainder operation can overflow if
the remainder operation is implemented based on the division operation that can
overflow.

• If one of the operands is negative, the operation result is uncertain. For C89, the
modulo operation is not standardized, so the result from negative operands is
implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in
general.

Fix

Before performing the modulo operation, validate the values of the operands. Check the
second operand for values of 0 and -1. Check both operands for negative values.

Examples

Modulo with Function Arguments

extern void print_int(int);

int taintedintmod(int userden) {

3-437

3 Checks

 int rem = 128%userden;

 print_int(rem);

 return rem;

}

In this example, the function performs a modulo operation by using an input argument.
The argument is not checked before calculating the remainder for values that can crash
the program, such as 0 and -1.

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the
modulo operation. In this corrected example, the modulo operation continues only if the
second operand is greater than zero.

extern void print_int(int);

int taintedintmod(int userden) {

 int rem = 0;

 if (userden > 0) {

 rem = 128 % userden;

 }

 print_int(rem);

 return rem;

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_int_mod
Impact: Low

See Also
Integer division by zero | Tainted division operand

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

3-438

 Tainted modulo operand

External Websites
• CWE-369: Divide By Zero
• CWE-682: Incorrect Calculation
• CERT C — INT10-C: Do not assume a positive remainder when using the %

operator
• CERT C — INT33-C: Ensure that division and remainder operations do not result

in divide-by-zero errors

Introduced in R2015b

3-439

http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/682.html
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6422581
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6422581
https://www.securecoding.cert.org/confluence/display/c/INT33-C.+Ensure+that+division+and+remainder+operations+do+not+result+in+divide-by-zero+errors
https://www.securecoding.cert.org/confluence/display/c/INT33-C.+Ensure+that+division+and+remainder+operations+do+not+result+in+divide-by-zero+errors

3 Checks

Loop bounded with tainted value
Loop controlled by a value from an unsecure source

Description

Loop bounded with tainted value detects loops that are bounded by values from an
unsecure source.

Risk

A tainted value can cause over looping or infinite loops. Attackers can use this
vulnerability to crash your program or cause other unintended behavior.

Fix

Before starting the loop, validate unknown boundary and iterator values.

Examples

Loop Boundary From Input Argument

enum {

 SIZE10 = 10,

 SIZE100 = 100,

 SIZE128 = 128

};

int taintedloopboundary(int count) {

 int res = 0;

 for (int i=0 ; i < count; ++i) {

 res += i;

 }

 return res;

}

In this example, the function uses the input argument to loop count times. count could
be any number because the value is not checked before starting the for-loop.

3-440

 Loop bounded with tainted value

Correction — Check Loop Control

One possible correction is to check the value of the variable controlling the loop before
starting the for-loop. This example checks if count is greater than zero and less than the
maximum size.

enum {

 SIZE10 = 10,

 SIZE100 = 100,

 SIZE128 = 128

};

int taintedloopboundary(int count) {

 int res = 0;

 if (count>0 && count<SIZE128) {

 for (int i=0 ; i<count ; ++i) {

 res += i;

 }

 }

 return res;

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_loop_boundary
Impact: Medium

See Also
Array access with tainted index | Pointer dereference with tainted offset

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-606: Unchecked Input for Loop Condition

3-441

http://cwe.mitre.org/data/definitions/606.html

3 Checks

• CWE-400: Uncontrolled Resource Consumption
• CWE-835: Loop with Unreachable Exit Condition
• CERT C — INT04-C: Enforce limits on integer values originating from tainted

sources
• CERT C — MSC21-C: Use robust loop termination conditions

Introduced in R2015b

3-442

http://cwe.mitre.org/data/definitions/400.html
http://cwe.mitre.org/data/definitions/835.html
https://www.securecoding.cert.org/confluence/display/c/INT04-C.+Enforce+limits+on+integer+values+originating+from+tainted+sources
https://www.securecoding.cert.org/confluence/display/c/INT04-C.+Enforce+limits+on+integer+values+originating+from+tainted+sources
https://www.securecoding.cert.org/confluence/display/c/MSC21-C.+Use+robust+loop+termination+conditions

 Memory allocation with tainted size

Memory allocation with tainted size

Size argument to memory function is from an unsecure source

Description

Memory allocation with tainted size checks memory allocation functions, such as
calloc or malloc, for size arguments from unsecured sources.

Risk

Uncontrolled memory allocation can cause your program to request too much system
memory. This consequence can lead to a crash due to an out-of-memory condition, or
assigning too many resources.

Fix

Before allocating memory, check the value of your arguments to check that they do not
exceed the bounds.

Examples

Allocate Memory Using Input Argument

#include "stdlib.h"

int* bug_taintedmemoryallocsize(size_t size) {

 int* p = (int*)malloc(size);

 return p;

}

In this example, malloc allocates size amount of memory for the pointer p. size is
an outside variable, so could be any size value. If the size is larger than the amount of
memory you have available, your program could crash.

3-443

3 Checks

Correction — Check Size of Memory to be Allocated

One possible correction is to check the size of the memory that you want to allocate before
performing the malloc operation. This example checks to see if the size is positive and
less than the maximum size.

#include "stdlib.h"

enum {

 SIZE10 = 10,

 SIZE100 = 100,

 SIZE128 = 128

};

int* corrected_taintedmemoryallocsize(int size) {

 int* p = NULL;

 if (size>0 && size<SIZE128) { /* Fix: Check entry range before use */

 p = (int*)malloc((unsigned int)size);

 }

 return p;

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_memory_alloc_size
Impact: Medium

See Also
Unprotected dynamic memory allocation

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-789: Uncontrolled Memory Allocation

3-444

http://cwe.mitre.org/data/definitions/789.html

 Memory allocation with tainted size

• CERT C — INT04-C: Enforce limits on integer values originating from tainted
sources

• CERT C — MEM07-C: Ensure that arguments to calloc(), when multiplied, do not
wrap

• CERT C — MEM10-C: Define and use a pointer validation function
• CERT C — MEM11-C: Do not assume infinite heap space
• CERT C — MEM35-C: Allocate sufficient memory for an object

Introduced in R2015b

3-445

https://www.securecoding.cert.org/confluence/display/c/INT04-C.+Enforce+limits+on+integer+values+originating+from+tainted+sources
https://www.securecoding.cert.org/confluence/display/c/INT04-C.+Enforce+limits+on+integer+values+originating+from+tainted+sources
https://www.securecoding.cert.org/confluence/display/c/MEM07-C.+Ensure+that+the+arguments+to+calloc%28%29%2C+when+multiplied%2C+do+not+wrap
https://www.securecoding.cert.org/confluence/display/c/MEM07-C.+Ensure+that+the+arguments+to+calloc%28%29%2C+when+multiplied%2C+do+not+wrap
https://www.securecoding.cert.org/confluence/display/c/MEM10-C.+Define+and+use+a+pointer+validation+function
https://www.securecoding.cert.org/confluence/display/c/MEM11-C.+Do+not+assume+infinite+heap+space
https://www.securecoding.cert.org/confluence/display/c/MEM35-C.+Allocate+sufficient+memory+for+an+object

3 Checks

Command executed from externally controlled path

Path argument from an unsecure source

Description

Command executed from externally controlled path checks the path of commands
that the application controls. If the path of a command is from or constructed from
external sources, Bug Finder flags the command function.

Risk

An attacker can:

• Change the command that the program executes, possibly to a command that only the
attack can control.

• Change the environment in which the command executes, by which the attacker
controls what the command means and does.

Fix

Before calling the command, validate the path to make sure that it is the intended
location.

Examples

Executing Path from Environment Variable

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

enum {

 SIZE10 = 10,

 SIZE100 = 100,

3-446

 Command executed from externally controlled path

 SIZE128 = 128

};

void bug_taintedpathcmd() {

 char cmd[SIZE128] = "";

 char* userpath = getenv("MYAPP_PATH");

 strncpy(cmd, userpath, SIZE100);

 strcat(cmd, "/ls *");

 /* Launching command */

 system(cmd);

}

This example obtains a path from an environment variable MYAPP_PATH. system runs
a command from that path without checking the value of the path. If the path is not the
intended path, your program executes in the wrong location.

Correction — Use Trusted Path

One possible correction is to use a list of allowed paths to match against the environment
variable path.

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

enum {

 SIZE10 = 10,

 SIZE100 = 100,

 SIZE128 = 128

};

/* Function to sanitize a string */

int sanitize_str(char* s, size_t n) {

 int res = 0;

 /* String is ok if */

 if (s && n>0 && n<SIZE128) {

 /* - string is not null */

 /* - string has a positive and limited size */

 s[n-1] = '\0'; /* Add a security \0 char at end of string */

 /* Tainted pointer detected above, used as "firewall" */

 res = 1;

 }

 return res;

3-447

3 Checks

}

/* Authorized path ids */

enum { PATH0=1, PATH1, PATH2 };

void taintedpathcmd() {

 char cmd[SIZE128] = "";

 char* userpathid = getenv("MYAPP_PATH_ID");

 if (sanitize_str(userpathid, SIZE100)) {

 int pathid = atoi(userpathid);

 char path[SIZE128] = "";

 switch(pathid) {

 case PATH0:

 strcpy(path, "/usr/local/my_app0");

 break;

 case PATH1:

 strcpy(path, "/usr/local/my_app1");

 break;

 case PATH2:

 strcpy(path, "/usr/local/my_app2");

 break;

 default:

 /* do nothing */

 break;

 }

 if (strlen(path)>0) {

 strncpy(cmd, path, SIZE100);

 strcat(cmd, "/ls *");

 system(cmd);

 }

 }

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_path_cmd
Impact: Medium

3-448

 Command executed from externally controlled path

See Also
Execution of externally controlled command | Use of externally controlled environment
variable | Host change using externally controlled elements | Library loaded from
externally controlled path

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-114: Process Control
• CWE-426: Untrusted Search Path
• CERT C — ENV33-C: Do not call system()
• CERT C — STR02-C: Sanitize data passed to complex subsystems

Introduced in R2015b

3-449

http://cwe.mitre.org/data/definitions/114.html
http://cwe.mitre.org/data/definitions/426.html
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2130132
https://www.securecoding.cert.org/confluence/display/c/STR02-C.+Sanitize+data+passed+to+complex+subsystems

3 Checks

Library loaded from externally controlled path
Using a library argument from an externally controlled path

Description

Library loaded from externally controlled path looks for libraries loaded from fixed
or controlled paths. If unintended actors can control one or more locations on this fixed
path, Bug Finder raises a defect.

Risk

If an attacker knows or controls the path that you use to load a library, the attacker can
change:

• The library that the program loads, replacing the intended library and commands.
• The environment in which the library executes, giving unintended permissions and

capabilities to the attacker.

Fix

When possible, use hard-coded or fully qualified path names to load libraries. It is
possible the hard-coded paths do not work on other systems. Use a centralized location
for hard-coded paths, so that you can easily modify the path within the source code.

Another solution is to use functions that require explicit paths. For example, system()
does not require a full path because it can use the PATH environment variable. However,
execl() and execv() do require the full path.

Examples

Call Custom Library

#include <stdlib.h>

#include <stdio.h>

3-450

 Library loaded from externally controlled path

#include <string.h>

#include <unistd.h>

#include <dlfcn.h>

#include <limits.h>

enum {

 SIZE10 = 10,

 SIZE100 = 100,

 SIZE128 = 128

};

void* taintedpathlib() {

 void* libhandle = NULL;

 char lib[SIZE128] = "";

 char* userpath = getenv("LD_LIBRARY_PATH");

 strncpy(lib, userpath, SIZE128);

 strcat(lib, "/libX.so");

 libhandle = dlopen(lib, 0x00001);

 return libhandle;

}

This example loads the library libX.so from an environment variable
LD_LIBRARY_PATH. An attacker can change the library path in this environment
variable. The actual library you load could be a different library from the one that you
intend.

Correction — Change and Check Path

One possible correction is to change how you get the library path and check the path
of the library before opening the library. This example receives the path as an input
argument. Then the path is checked to make sure the library is not under /usr/.

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <dlfcn.h>

#include <limits.h>

enum {

 SIZE10 = 10,

 SIZE100 = 100,

 SIZE128 = 128

};

3-451

3 Checks

/* Function to sanitize a string */

int sanitize_str(char* s, size_t n) {

 /* strlen is used here as a kind of firewall for tainted string errors */

 int res = (strlen(s) > 0 && strlen(s) < n);

 return res;

}

void* taintedpathlib(char* userpath) {

 void* libhandle = NULL;

 if (sanitize_str(userpath, SIZE128)) {

 char lib[SIZE128] = "";

 if (strncmp(userpath, "/usr", 4)!=0) {

 strncpy(lib, userpath, SIZE128);

 strcat(lib, "/libX.so");

 libhandle = dlopen(lib, RTLD_LAZY);

 }

 }

 return libhandle;

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_path_lib
Impact: Medium

See Also
Execution of externally controlled command | Use of externally controlled environment
variable | Command executed from externally controlled path

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-114: Process Control

3-452

http://cwe.mitre.org/data/definitions/114.html

 Library loaded from externally controlled path

• CWE-426: Untrusted Search Path
• CERT C — STR02-C: Sanitize data passed to complex subsystems
• CERT C — WIN00-C: Be specific when dynamically loading libraries

Introduced in R2015b

3-453

http://cwe.mitre.org/data/definitions/426.html
https://www.securecoding.cert.org/confluence/display/c/STR02-C.+Sanitize+data+passed+to+complex+subsystems
https://www.securecoding.cert.org/confluence/display/c/WIN00-C.+Be+specific+when+dynamically+loading+libraries

3 Checks

Use of tainted pointer
Pointer from an unsecure source may be NULL or point to unknown memory

Description

Use of tainted pointer defect is raised when:

• Tainted NULL pointer — the pointer is not validated against NULL.
• Tainted size pointer — the size of the memory zone that a pointer points to is not

validated.

Note: On a single pointer, your code can have instances of Use of tainted pointer,
Pointer dereference with tainted offset, and Tainted NULL or non-null-
terminated string. Bug Finder raises only the first tainted pointer defect that it finds.

Risk

An attacker can give your program a pointer that points to unexpected memory locations.
If the pointer is dereferenced to write, the attacker can:

• Modify the state variables of a critical program.
• Cause your program to crash.
• Execute unwanted code.

If the pointer is dereferenced to read, the attacker can:

• Read sensitive data.
• Cause your program to crash.
• Modify a program variable to an unexpected value.

Fix

If you expect a valid memory location, check that the pointer is not NULL. Also, check
the size of the memory location. This second check validates whether the size of the data
the pointer points to matches the size your program expects.

3-454

 Use of tainted pointer

Examples

Function to Change Pointer

void taintedptr(int* p, int i) {

 *p = i;

}

In this example, the pointer *p is passed as an argument, and the value is changed. The
pointer can be null or point to unknown memory, which can be vulnerable.

Correction — Check Pointer

One possible correction is to sanitize the pointer before using it. This example uses a
second function to check if the pointer is null and can be dereferenced.

#include <stdlib.h>

int* sanitize_ptr(int* p) {

 int* res = NULL;

 if (p && *p) { /* Tainted pointer detected here, used as "firewall" */

 /* Pointer is not null and dereference ok */

 res = p;

 }

 return res;

}

void taintedptr(int* p, int i) {

 p = sanitize_ptr(p);

 if (p) {

 *p = i;

 }

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_ptr
Impact: Low

3-455

3 Checks

See Also
Pointer dereference with tainted offset

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-822: Untrusted Pointer Dereference
• CERT C — API02-C: Functions that read or write to or from an array should take

an argument to specify the source or target size
• CERT C — ARR30-C: Do not form or use out-of-bounds pointers or array subscripts
• CERT C — ARR38-C: Guarantee that library functions do not form invalid pointers
• CERT C — EXP34-C: Do not dereference null pointers
• CERT C — MEM10-C: Define and use a pointer validation function

Introduced in R2015b

3-456

http://cwe.mitre.org/data/definitions/822.html
https://www.securecoding.cert.org/confluence/display/c/API02-C.+Functions+that+read+or+write+to+or+from+an+array+should+take+an+argument+to+specify+the+source+or+target+size
https://www.securecoding.cert.org/confluence/display/c/API02-C.+Functions+that+read+or+write+to+or+from+an+array+should+take+an+argument+to+specify+the+source+or+target+size
https://www.securecoding.cert.org/confluence/display/c/ARR30-C.+Do+not+form+or+use+out-of-bounds+pointers+or+array+subscripts
https://www.securecoding.cert.org/confluence/display/c/ARR38-C.+Guarantee+that+library+functions+do+not+form+invalid+pointers
https://www.securecoding.cert.org/confluence/display/c/EXP34-C.+Do+not+dereference+null+pointers
https://www.securecoding.cert.org/confluence/display/c/MEM10-C.+Define+and+use+a+pointer+validation+function

 Pointer dereference with tainted offset

Pointer dereference with tainted offset
Offset is from an unsecure source and dereference may be out of bounds

Description

Pointer dereference with tainted offset detects pointer dereferencing, either reading
or writing, using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array
access with tainted index.

Risk

The index might be outside the valid array range. If the tainted index is outside the
array range, it can cause:

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted

buffer.

An attacker can use an invalid read or write to compromise your program.

Fix

Validate the index before you use the variable to access the pointer. Check to make sure
that the variable is inside the valid range and does not overflow.

Examples

Dereference Pointer Array

#include <stdlib.h>

3-457

3 Checks

enum {

 SIZE10 = 10,

 SIZE100 = 100,

 SIZE128 = 128

};

extern void read_pint(int*);

int taintedptroffset(int i) {

 int* pint = (int*)calloc(SIZE10, sizeof(int));

 int c = 0;

 if(pint) {

 /* Filling array */

 read_pint(pint);

 c = pint[i];

 free(pint);

 }

 return c;

}

In this example, the function initializes an integer pointer pint. The pointer is
dereferenced using the input index i. The value of i could be outside the pointer range,
causing an out-of-range error.

Correction — Check Index Before Dereference

One possible correction is to validate the value of the index. If the index is inside the
valid range, continue with the pointer dereferencing.

#include <stdlib.h>

enum {

 SIZE10 = 10,

 SIZE100 = 100,

 SIZE128 = 128

};

extern void read_pint(int*);

int taintedptroffset(int i) {

 int* pint = (int*)calloc(SIZE10, sizeof(int));

 int c = 0;

 if (pint) {

 /* Filling array */

 read_pint(pint);

3-458

 Pointer dereference with tainted offset

 if (i>0 && i<SIZE10) {

 c = pint[i];

 }

 free(pint);

 }

 return c;

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_ptr_offset
Impact: Low

See Also
Array access with tainted index | Use of tainted pointer

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-129: Improper Validation of Array Index
• CWE-823: Use of Out-of-range Pointer Offset
• CWE-122: Heap-based Buffer Overflow
• CWE-124: Buffer Underwrite
• CERT C — ARR30-C: Do not form or use out-of-bounds pointers or array subscripts

Introduced in R2015b

3-459

http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/823.html
http://cwe.mitre.org/data/definitions/122.html
http://cwe.mitre.org/data/definitions/124.html
https://www.securecoding.cert.org/confluence/display/c/ARR30-C.+Do+not+form+or+use+out-of-bounds+pointers+or+array+subscripts

3 Checks

Tainted sign change conversion

Value from an unsecure source changes sign

Description

Tainted sign change conversion looks for values from unsecure sources that are
converted, implicitly or explicitly, from signed to unsigned values.

For example, functions that use size_t as arguments implicitly convert the argument to
an unsigned integer. Some functions that implicitly convert size_t are:

bcmp

memcpy

memmove

strncmp

strncpy

calloc

malloc

memalign

Risk

If you convert a small negative number to unsigned, the result is a large positive number.
The large positive number can create security vulnerabilities. For example, if you use the
unsigned value in:

• Memory size routines — causes allocating memory issues.
• String manipulation routines — causes buffer overflow.
• Loop boundaries — causes infinite loops.

Fix

To avoid converting unsigned negative values, check that the value being converted is
within an acceptable range. For example, if the value represents a size, validate that the
value is not negative and less than the maximum value size.

3-460

 Tainted sign change conversion

Examples

Set Memory Value with Size Argument

#include <stdlib.h>

#include <string.h>

enum {

 SIZE10 = 10,

 SIZE100 = 100,

 SIZE128 = 128

};

void bug_taintedsignchange(int size) {

 char str[SIZE128] = "";

 if (size<SIZE128) {

 memset(str, 'c', size);

 }

}

In this example, a char buffer is created and filled using memset. The size argument to
memset is an input argument to the function.

The call to memset implicitly converts size to unsigned integer. If size is a large
negative number, the absolute value could be too large to represent as an integer,
causing a buffer overflow.

Correction — Check Value of size

One possible correction is to check if size is inside the valid range. This correction
checks if size is greater than zero and less than the buffer size before calling memset.

#include <stdlib.h>

#include <string.h>

enum {

 SIZE10 = 10,

 SIZE100 = 100,

 SIZE128 = 128

};

void corrected_taintedsignchange(int size) {

 char str[SIZE128] = "";

3-461

3 Checks

 if (size>0 && size<SIZE128) {

 memset(str, 'c', size);

 }

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_sign_change
Impact: Medium

See Also
Sign change integer conversion overflow

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-195: Signed to Unsigned Conversion Error
• CWE-194: Unexpected Sign Extension
• CERT C — INT02-C: Understand integer conversion rules
• CERT C — INT31-C: Ensure that integer conversions do not result in lost or

misinterpreted data
• CERT C — MEM04-C: Beware of zero-length allocations
• CERT C — MEM11-C: Do not assume infinite heap space
• CERT C — MSC21-C: Use robust loop termination conditions

Introduced in R2015b

3-462

http://cwe.mitre.org/data/definitions/195.html
http://cwe.mitre.org/data/definitions/194.html
https://www.securecoding.cert.org/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://www.securecoding.cert.org/confluence/display/c/INT31-C.+Ensure+that+integer+conversions+do+not+result+in+lost+or+misinterpreted+data
https://www.securecoding.cert.org/confluence/display/c/INT31-C.+Ensure+that+integer+conversions+do+not+result+in+lost+or+misinterpreted+data
https://www.securecoding.cert.org/confluence/display/c/MEM04-C.+Beware+of+zero-length+allocations
https://www.securecoding.cert.org/confluence/display/c/MEM11-C.+Do+not+assume+infinite+heap+space
https://www.securecoding.cert.org/confluence/display/c/MSC21-C.+Use+robust+loop+termination+conditions

 Tainted NULL or non-null-terminated string

Tainted NULL or non-null-terminated string

Argument is from an unsecure source and may be NULL or not NULL-terminated

Description

Tainted NULL or non-null-terminated string looks for strings from unsecure sources
that are being used in string manipulation routines that implicitly dereference the string
buffer. For example, strcpy or sprintf.

Note: If you reference a string using the form ptr[i], *ptr, or pointer arithmetic, Bug
Finder raises a Use of tainted pointer defect instead. The Tainted NULL or non-
null-terminated string defect is raised only when the pointer is used as a string.

Risk

If a string is from an unsecure source, it is possible that an attacker manipulated the
string or pointed the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the
program to crash. If the string is not null-terminated, the string routine might not know
when the string ends. This error can cause you to write out of bounds, causing a buffer
overflow.

Fix

Validate the string before you use it. Check that:

• The string is not NULL.
• The string is null-terminated
• The size of the string matches the expected size.

3-463

3 Checks

Examples

Getting String from Input Argument

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)

{

 char str[SIZE128] = "Warning: ";

 strncat(str, userstr, SIZE128-(strlen(str)+1));

 print_str(str);

}

void errorMsg(char* userstr)

{

 char str[SIZE128] = "Error: ";

 strncat(str, userstr, SIZE128-(strlen(str)+1));

 print_str(str);

}

In this example, the string str is concatenated with the argument userstr. The value
of userstr is unknown. If the size of userstr is greater than the space available, the
concatenation overflows.

Correction — Validate the Data

One possible correction is to check the size of userstr and make sure that the string
is null-terminated before using it in strncat. This example uses a helper function,
sansitize_str, to validate the string. The defects are concentrated in this function.

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

3-464

 Tainted NULL or non-null-terminated string

int sanitize_str(char* s) {

 int res = 0;

 if (s && (strlen(s) > 0)) { // TAINTED_STRING only flagged here

 // - string is not null

 // - string has a positive and limited size

 // - TAINTED_STRING on strlen used as a firewall

 res = 1;

 }

 return res;

}

void warningMsg(char* userstr)

{

 char str[SIZE128] = "Warning: ";

 if (sanitize_str(userstr))

 strncat(str, userstr, SIZE128-(strlen(str)+1));

 print_str(str);

}

void errorMsg(char* userstr)

{

 char str[SIZE128] = "Error: ";

 if (sanitize_str(userstr))

 strncat(str, userstr, SIZE128-(strlen(str)+1));

 print_str(str);

}

Correction — Validate the Data

Another possible correction is to call function errorMsg and warningMsg with specific
strings.

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)

{

 char str[SIZE128] = "Warning: ";

 strncat(str, userstr, SIZE128-(strlen(str)+1));

3-465

3 Checks

 print_str(str);

}

void errorMsg(char* userstr)

{

 char str[SIZE128] = "Error: ";

 strncat(str, userstr, SIZE128-(strlen(str)+1));

 print_str(str);

}

int manageSensorValue(int sensorValue) {

 int ret = sensorValue;

 if (sensorValue < 0) {

 errorMsg("sensor value should be positive");

 exit(1);

 } else if (sensorValue > 50) {

 warningMsg("sensor value greater than 50 (applying threshold)...");

 sensorValue = 50;

 }

 return sensorValue;

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_string
Impact: Low

See Also
Tainted string format

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-476: NULL Pointer Dereference

3-466

http://cwe.mitre.org/data/definitions/476.html

 Tainted NULL or non-null-terminated string

• CWE-170: Improper Null Termination
• CWE-822: Untrusted Pointer Dereference
• CWE-120: Buffer Copy without Checking Size of Input
• CERT C — ENV01-C: Do not make assumptions about the size of an environment

variable
• CERT C — STR31-C: Guarantee that storage for strings has sufficient space for

character data and the null terminator
• CERT C — STR32-C: Do not pass a non-null-terminated character sequence to a

library function that expects a string

Introduced in R2015b

3-467

http://cwe.mitre.org/data/definitions/170.html
http://cwe.mitre.org/data/definitions/822.html
http://cwe.mitre.org/data/definitions/120.html
https://www.securecoding.cert.org/confluence/display/c/ENV01-C.+Do+not+make+assumptions+about+the+size+of+an+environment+variable
https://www.securecoding.cert.org/confluence/display/c/ENV01-C.+Do+not+make+assumptions+about+the+size+of+an+environment+variable
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/c/STR32-C.+Do+not+pass+a+non-null-terminated+character+sequence+to+a+library+function+that+expects+a+string
https://www.securecoding.cert.org/confluence/display/c/STR32-C.+Do+not+pass+a+non-null-terminated+character+sequence+to+a+library+function+that+expects+a+string

3 Checks

Tainted string format
Input format argument is from an unsecure source

Description

Tainted string format detects string formatting with printf-style functions that
contain elements from unsecure sources.

Risk

If you use externally controlled elements to format a string, you can cause buffer overflow
or data-representation problems. An attacker can use these string formatting elements to
view the contents of a stack using %x or write to a stack using %n.

Fix

Pass a static string to format string functions. This fix ensures that an external actor
cannot control the string.

Another possible fix is to allow only the expected number of arguments. If possible, use
functions that do not support the vulnerable %n operator in format strings.

Examples

Get Elements from User Input

#include "stdio.h"

void taintedstringformat(char* userstr) {

 printf(userstr);

}

This example prints the input argument userstr. The string is unknown. If it contains
elements such as %, printf can interpret userstr as a string format instead of a string,
causing your program to crash.

3-468

 Tainted string format

Correction — Print as String

One possible correction is to print userstr explicitly as a string so that there is no
ambiguity.

#include "stdio.h"

void taintedstringformat(char* userstr) {

 printf("%.20s", userstr);

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_string_format
Impact: Low

See Also
Tainted NULL or non-null-terminated string

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-134: Uncontrolled Format String
• CERT C — FIO30-C: Exclude user input from format strings

Introduced in R2015b

3-469

http://cwe.mitre.org/data/definitions/134.html
https://www.securecoding.cert.org/confluence/display/c/FIO30-C.+Exclude+user+input+from+format+strings

3 Checks

Tainted size of variable length array
Size of the variable-length array (VLA) is from an unsecure source and may be zero,
negative, or too large

Description

Tainted size of variable length array detects variable length arrays (VLA) whose size
is from an unsecure source.

Risk

If an attacker changed the size of your VLA to an unexpected value, it can cause your
program to crash or behave unexpectedly.

If the size is non-positive, the behavior of the VLA is undefined. Your program does not
perform as expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.

Fix

Validate your VLA size to make sure that it is positive and less than a maximum value.

Examples

Input Argument Used as Size of VLA

enum {

 SIZE10 = 10,

 SIZE100 = 100,

 SIZE128 = 128

};

int taintedvlasize(int size) {

3-470

 Tainted size of variable length array

 int tabvla[size];

 int res = 0;

 for (int i=0 ; i<SIZE10 ; ++i) {

 tabvla[i] = i*i;

 res += tabvla[i];

 }

 return res;

}

In this example, a variable length array size is based on an input argument. Because this
input argument value is not checked, the size may be negative or too large.

Correction — Check VLA Size

One possible correction is to check the size variable before creating the variable length
array. This example checks if the size is larger than 10 and less than 100, before creating
the VLA

enum {

 SIZE10 = 10,

 SIZE100 = 100,

 SIZE128 = 128

};

int taintedvlasize(int size) {

 int res = 0;

 if (size>SIZE10 && size<SIZE100) {

 int tabvla[size];

 for (int i=0 ; i<SIZE10 ; ++i) {

 tabvla[i] = i*i;

 res += tabvla[i];

 }

 }

 return res;

}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: tainted_vla_size
Impact: Medium

3-471

3 Checks

See Also
Memory allocation with tainted size

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-789: Uncontrolled Memory Allocation
• CWE-770: Allocation of Resources Without Limits or Throttling
• CERT C — ARR32-C. Ensure size arguments for variable length arrays are in a

valid range
• CERT C — INT04-C: Enforce limits on integer values originating from tainted

sources
• CERT C — MEM04-C: Beware of zero-length allocations
• CERT C — MEM05-C: Avoid large stack allocations

Introduced in R2015b

3-472

http://cwe.mitre.org/data/definitions/789.html
http://cwe.mitre.org/data/definitions/770.html
https://www.securecoding.cert.org/confluence/display/c/ARR32-C.+Ensure+size+arguments+for+variable+length+arrays+are+in+a+valid+range
https://www.securecoding.cert.org/confluence/display/c/ARR32-C.+Ensure+size+arguments+for+variable+length+arrays+are+in+a+valid+range
https://www.securecoding.cert.org/confluence/display/c/INT04-C.+Enforce+limits+on+integer+values+originating+from+tainted+sources
https://www.securecoding.cert.org/confluence/display/c/INT04-C.+Enforce+limits+on+integer+values+originating+from+tainted+sources
https://www.securecoding.cert.org/confluence/display/c/MEM04-C.+Beware+of+zero-length+allocations
https://www.securecoding.cert.org/confluence/display/c/MEM05-C.+Avoid+large+stack+allocations

 File access between time of check and use (TOCTOU)

File access between time of check and use (TOCTOU)
File or folder might change state due to access race

Description

File access between time of check and use (TOCTOU) detects race condition issues
between checking the existence of a file or folder, and using a file or folder.

Risk

An attacker can access and manipulate your file between your check for the file and your
use of a file. Symbolic links are particularly risky because an attacker can change where
your symbolic link points.

Fix

Before using a file, do not check its status. Instead, use the file and check the results
afterward.

Examples

Check File Before Using

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {

 if (access(log_path, W_OK)==0) {

 FILE* f = fopen(log_path, "w");

 if (f) {

 print_tofile(f);

 fclose(f);

 }

 }

3-473

3 Checks

}

In this example, before opening and using the file, the function checks if the file exists.
However, an attacker can change the file between the first and second lines of the
function.

Correction — Open Then Check

One possible correction is to open the file, and then check the existence and contents
afterward.

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {

 int fd = open(log_path, O_WRONLY);

 if (fd!=-1) {

 FILE *f = fdopen(fd, "w");

 if (f) {

 print_tofile(f);

 fclose(f);

 }

 }

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: toctou
Impact: Medium

See Also
Data race | Bad file access mode or status

More About
• “Navigate to Root Cause of Defect”

3-474

 File access between time of check and use (TOCTOU)

• “Review and Fix Results”

External Websites
• CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition
• CERT C — FIO01-C: Be careful using functions that use file names for

identification
• CERT C — FIO45-C: Avoid TOCTOU race conditions while accessing files
• CERT C — POS35-C: Avoid race conditions while checking for the existence of a

symbolic link

Introduced in R2015b

3-475

http://cwe.mitre.org/data/definitions/367.html
https://www.securecoding.cert.org/confluence/display/c/FIO01-C.+Be+careful+using+functions+that+use+file+names+for+identification
https://www.securecoding.cert.org/confluence/display/c/FIO01-C.+Be+careful+using+functions+that+use+file+names+for+identification
https://www.securecoding.cert.org/confluence/display/c/FIO45-C.+Avoid+TOCTOU+race+conditions+while+accessing+files
https://www.securecoding.cert.org/confluence/display/c/POS35-C.+Avoid+race+conditions+while+checking+for+the+existence+of+a+symbolic+link
https://www.securecoding.cert.org/confluence/display/c/POS35-C.+Avoid+race+conditions+while+checking+for+the+existence+of+a+symbolic+link

3 Checks

Unsafe standard encryption function
Function is not reentrant or uses a risky encryption algorithm

Description

Unsafe standard encryption function detects use of functions with a broken or weak
cryptographic algorithm. For example, crypt is not reentrant and is based on the risky
Data Encryption Standard (DES).

Risk

The use of a broken, weak, or nonstandard algorithm can expose sensitive information to
an attacker. A determined hacker can access the protected data using various techniques.

If the weak function is nonreentrant, when you use the function in concurrent programs,
there is an additional race condition risk.

Fix

Avoid functions that use these encryption algorithms. Instead, use a reentrant function
that uses a stronger encryption algorithm.

Note: Some implementations of crypt support additional, possibly more secure,
encryption algorithms.

Examples

Decrypting Password Using crypt

#define _GNU_SOURCE

#include <pwd.h>

#include <string.h>

#include <crypt.h>

3-476

 Unsafe standard encryption function

volatile int rd = 1;

const char *salt = NULL;

struct crypt_data input, output;

int verif_pwd(const char *pwd, const char *cipher_pwd, int safe)

{

 int r = 0;

 char *decrypted_pwd = NULL;

 switch(safe)

 {

 case 1:

 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);

 break;

 case 2:

 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);

 break;

 default:

 decrypted_pwd = crypt(pwd, cipher_pwd);

 break;

 }

 r = (strcmp(cipher_pwd, decrypted_pwd) == 0);

 return r;

}

In this example, crypt_r and crypt decrypt a password. However, crypt is
nonreentrant and uses the unsafe Data Encryption Standard algorithm.

Correction — Use crypt_r

One possible correction is to replace crypt with crypt_r.

#define _GNU_SOURCE

#include <pwd.h>

#include <string.h>

#include <crypt.h>

volatile int rd = 1;

const char *salt = NULL;

3-477

3 Checks

struct crypt_data input, output;

int verif_pwd(const char *pwd, const char *cipher_pwd, int safe)

{

 int r = 0;

 char *decrypted_pwd = NULL;

 switch(safe)

 {

 case 1:

 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);

 break;

 case 2:

 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);

 break;

 default:

 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);

 break;

 }

 r = (strcmp(cipher_pwd, decrypted_pwd) == 0);

 return r;

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: unsafe_std_crypt
Impact: Medium

See Also
Deterministic random output from constant seed | Predictable random output from
predictable seed | Vulnerable pseudo-random number generator

More About
• “Navigate to Root Cause of Defect”

3-478

 Unsafe standard encryption function

• “Review and Fix Results”

External Websites
• CWE-327: Use of a Broken or Risky Cryptographic Algorithm
• CWE-663: Use of a Non-reentrant Function in a Concurrent Context
• CERT C — MSC18-C: Be careful while handling sensitive data, such as passwords,

in program code

Introduced in R2015b

3-479

http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/663.html
https://www.securecoding.cert.org/confluence/display/c/MSC18-C.+Be+careful+while+handling+sensitive+data%2C+such+as+passwords%2C+in+program+code
https://www.securecoding.cert.org/confluence/display/c/MSC18-C.+Be+careful+while+handling+sensitive+data%2C+such+as+passwords%2C+in+program+code

3 Checks

Unsafe standard function
Function unsafe for security-related purposes

Description

Unsafe standard function looks for functions that are unsafe and must not be used
for security-related programming. Functions can be unsafe for many reasons. Some
functions are unsafe because they are nonreentrant. Other functions change depending
on the target or platform, making some implementations unsafe.

Risk

Some unsafe functions are not reentrant, meaning that the contents of the function are
not locked during a call. So, an attacker can change the values midstream.

getlogin specifically can be unsafe depending on the implementation. Some
implementations of getlogin return only the first eight characters of a log-in name. An
attacker can use a different login with the same first eight characters to gain entry and
manipulate the program.

Fix

Avoid unsafe functions for security-related purposes. If you cannot avoid unsafe
functions, use a safer version of the function instead. For getlogin, use getlogin_r.

Examples

Using getlogin

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <pwd.h>

#include <string.h>

#include <stdlib.h>

3-480

 Unsafe standard function

volatile int rd = 1;

int login_name_check(char *user)

{

 int r = -2;

 char *name = getlogin();

 if (name != NULL)

 {

 if (strcmp(name, user) == 0)

 {

 r = 0;

 }

 else

 r = -1;

 }

 return r;

}

This example uses getlogin to compare the user name of the current user to the given
user name . However, getlogin can return something other than the current user name
because a parallel process can change the string.

Correction — Use getlogin_r

One possible correction is to use getlogin_r instead of getlogin. getlogin_r is
reentrant, so you can trust the result.

#define _POSIX_C_SOURCE 199506L // use of getlogin_r

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <pwd.h>

#include <string.h>

#include <stdlib.h>

volatile int rd = 1;

enum { NAME_MAX_SIZE=64 };

int login_name_check(char *user)

3-481

3 Checks

{

 int r;

 char name[NAME_MAX_SIZE];

 if (getlogin_r(name, sizeof(name)) == 0)

 {

 if ((strlen(user) < sizeof(name)) &&

 (strncmp(name, user, strlen(user)) == 0))

 {

 r = 0;

 }

 else

 r = -1;

 }

 else

 r = -2;

 return r;

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: unsafe_std_func
Impact: Medium

See Also
Use of obsolete standard function | Use of dangerous standard function | Invalid use of
standard library string routine

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-558: Use of getlogin() in Multithreaded Application
• CWE-663: Use of a Non-reentrant Function in a Concurrent Context

3-482

http://cwe.mitre.org/data/definitions/558.html
http://cwe.mitre.org/data/definitions/663.html

 Unsafe standard function

Introduced in R2015b

3-483

3 Checks

Vulnerable pseudo-random number generator
Using a cryptographically weak pseudo-random number generator

Description

The Vulnerable pseudo-random number generator identifies uses of
cryptographically weak pseudo-random number generator (PRNG) routines, such as
rand, rand48.

Risk

These cryptographically weak routines are predictable and must not be used for security
purposes. When a predictable random value controls the execution flow, your program is
vulnerable to malicious attacks.

Fix

Use more cryptographically sound random number generators, such as
CryptGenRandom (Windows), OpenSSL/RAND_bytes(Linux/UNIX).

Examples

Random Loop Numbers

#include <stdio.h>

#include <stdlib.h>

volatile int rd = 1;

int main(int argc, char *argv[])

{

 int j, r, nloops;

 struct random_data buf;

 int i = 0;

 nloops = rand();

3-484

 Vulnerable pseudo-random number generator

 for (j = 0; j < nloops; j++) {

 if (random_r(&buf, &i))

 exit(1);

 printf("random_r: %ld\n", (long)i);

 }

 return 0;

}

This example uses rand and random_r to generate random numbers. If you use these
functions for security purposes, these PRNGs can be the source of malicious attacks.

Correction — Use Stronger PRNG

One possible correction is to replace the vulnerable PRNG with a stronger random
number generator.

#include <stdio.h>

#include <stdlib.h>

#include <openssl/rand.h>

volatile int rd = 1;

int main(int argc, char* argv[])

{

 int j, r, nloops;

 unsigned char buf;

 unsigned int seed;

 int i = 0;

 if (argc != 3)

 {

 fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 seed = atoi(argv[1]);

 nloops = atoi(argv[2]);

 for (j = 0; j < nloops; j++) {

 if (RAND_bytes(&buf, i) != 1)

 exit(1);

 printf("RAND_bytes: %u\n", (unsigned)buf);

 }

3-485

3 Checks

 return 0;

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: vulnerable_prng
Impact: Medium

See Also
Deterministic random output from constant seed | Predictable random output from
predictable seed | Unsafe standard encryption function

More About
• “Navigate to Root Cause of Defect”
• “Review and Fix Results”

External Websites
• CWE-330: Use of Insufficiently Random Values
• CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator

(PRNG)
• CERT C — MSC30-C: Do not use the rand() function for generating pseudorandom

numbers

Introduced in R2015b

3-486

http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/338.html
http://cwe.mitre.org/data/definitions/338.html
https://www.securecoding.cert.org/confluence/display/c/MSC30-C.+Do+not+use+the+rand%28%29+function+for+generating+pseudorandom+numbers
https://www.securecoding.cert.org/confluence/display/c/MSC30-C.+Do+not+use+the+rand%28%29+function+for+generating+pseudorandom+numbers

 Unsafe conversion between pointer and integer

Unsafe conversion between pointer and integer

Misaligned or invalid results from conversions between pointer and integer types

Description

Unsafe conversion between pointer and integer checks for pointer to integer
and integer to pointers conversions. If you convert between a pointer, intptr_t, or
uintprt_t and an integer type, such as enum, ptrdiff_t, or pid_t, Polyspace raises a
defect.

Risk

The mapping between pointers and integers is not always consistent with the addressing
structure of the environment.

Converting from pointers to integers can create:

• Truncated or out of range integer values.
• Invalid integer types.

Converting from integers to pointers can create:

• Misaligned pointers or misaligned objects.
• Invalid pointer addresses.

Fix

Where possible, avoid pointer-to-integer or integer-to-pointer conversions. If you want to
convert a void pointer to an integer, so that you do not change the value, use types:

• C99 — intptr_t or uintptr_t
• C90 — size_t or ssize_t

3-487

3 Checks

Examples

Integer to Pointer Conversions

unsigned int *badintptrcast(void)

{

 unsigned int *ptr0 = (unsigned int *)0xdeadbeef;

 char *ptr1 = (char *)0xdeadbeef;

 return (unsigned int *)(ptr0 - (unsigned int *)ptr1);

}

In this example, there are three conversions, two unsafe conversions and one safe
conversion. The first conversion of 0xdeadbeef to unsigned int* causes alignment
issues for the pointer. The second conversion of 0xdeadbeef to char * is safe because
there are no alignment issues for char. The third conversion in the return casts
ptrdiff_t to a pointer. This pointer might or might not point to an invalid address.

Correction — Use intptr_t

One possible correction is to use intptr_t types to store the pointer address
0xdeadbeef. Also, you can change the second pointer to an integer offset so that there is
no longer a conversion from ptrdiff_t to a pointer.

#include <stdint.h>

unsigned int *badintptrcast(void)

{

 intptr_t iptr0 = (intptr_t)0xdeadbeef;

 int offset = 0;

 return (unsigned int *)(iptr0 - offset);

}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: bad_int_ptr_cast
Impact: Medium

3-488

 Unsafe conversion between pointer and integer

External Websites
• CERT C — INT36-C
• CWE-466
• CWE-465
• CWE-587
• CWE-758

Introduced in R2016b

3-489

https://www.securecoding.cert.org/confluence/x/XAAV
https://cwe.mitre.org/data/definitions/466.html
https://cwe.mitre.org/data/definitions/465.html
https://cwe.mitre.org/data/definitions/587.html
https://cwe.mitre.org/data/definitions/758.html

3 Checks

Use of plain char type for numerical value
Plain char variable in arithmetic operation without explicit signedness

Description

Use of plain char type for numerical value detects char variables without explicit
signedness that are being used in these ways:

• To store non-char constants
• In an arithmetic operation when the char is:

• A negative value.
• The result of a sign changing overflow.

• As a buffer offset.

char variables without a signed or unsigned qualifier can be either signed or unsigned
depending on your compiler.

Risk

Operations on a plain char can result in unexpected numerical values. If the char is used
as an offset, the char can cause buffer overflow or underflow.

Fix

When initializing a char variable, to avoid implementation-defined confusion, explicitly
state whether the char is signed or unsigned.

Examples

Divide by char Variable

#include <stdio.h>

void badplaincharuse(void)

3-490

 Use of plain char type for numerical value

{

 char c = 200;

 int i = 1000;

 (void)printf("i/c = %d\n", i/c);

}

In this example, the char variable c can be signed or unsigned depending on your
compiler. Assuming 8-bit, two's complement character types, the result is either i/c =
5 (unsigned char) or i/c = -17 (signed char). The correct result is unknown without
knowing the signedness of char.

Correction — Add signed Qualifier

One possible correction is to add a signed qualifier to char. This clarification makes the
operation defined.

#include <stdio.h>

void badplaincharuse(void)

{

 signed char c = -56;

 int i = 1000;

 (void)printf("i/c = %d\n", i/c);

}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: bad_plain_char_use
Impact: Medium

External Websites
• CERT C — INT07-C
• CWE-682

Introduced in R2016b

3-491

https://www.securecoding.cert.org/confluence/x/-As
https://cwe.mitre.org/data/definitions/682.html

3 Checks

Bad order of dropping privileges
Dropped higher elevated privileges before dropping lower elevated privileges

Description

Bad order of dropping privileges checks the order of privilege drops. If you drop
higher elevated privileges before dropping lower elevated privileges, Polyspace raises a
defect. For example dropping elevated primary group privileges before dropping elevated
ancillary group privileges.

Risk

If you drop privileges in the wrong order, you can potentially drop higher privileges
that you need to drop lower privileges. The incorrect order can mean, privileges are not
dropped, compromising the security of your program.

Fix

Respect this order of dropping elevated privileges:

• Drop (elevated) ancillary group privileges, then drop (elevated) primary group
privileges.

• Drop (elevated) primary group privileges, then drop (elevated) user privileges.

Examples

Dropping User Privileges First

#define _BSD_SOURCE

#include <sys/types.h>

#include <unistd.h>

#include <grp.h>

#include <stdlib.h>

#define fatal_error() abort()

static void sanitize_privilege_drop_check(uid_t olduid, gid_t oldgid)

3-492

 Bad order of dropping privileges

{

 if (seteuid(olduid) != -1)

 {

 /* Privileges can be restored, handle error */

 fatal_error();

 }

 if (setegid(oldgid) != -1)

 {

 /* Privileges can be restored, handle error */

 fatal_error();

 }

}

void badprivilegedroporder(void) {

 uid_t

 newuid = getuid(),

 olduid = geteuid();

 gid_t

 newgid = getgid(),

 oldgid = getegid();

 if (setuid(newuid) == -1) {

 /* handle error condition */

 fatal_error();

 }

 if (setgid(newgid) == -1) {

 /* handle error condition */

 fatal_error();

 }

 if (olduid == 0) {

 /* drop ancillary groups IDs only possible for root */

 if (setgroups(1, &newgid) == -1) {

 /* handle error condition */

 fatal_error();

 }

 }

 sanitize_privilege_drop_check(olduid, oldgid);

}

In this example, there are two privilege drops made in the incorrect order. setgid
attempts to drop group privileges. However, setgid requires the user privileges,
which were dropped previously using setuid, to perform this function. After dropping
group privileges, this function attempts to drop ancillary groups privileges by using
setgroups. This task requires the higher primary group privileges that were dropped

3-493

3 Checks

with setgid. At the end of this function, it is possible to regain group privileges because
the order of dropping privileges was incorrect.

Correction — Reverse Privilege Drop Order

One possible correction is to drop the lowest level privileges first. In this correction,
ancillary group privileges are dropped, then primary group privileges are dropped, and
finally user privileges are dropped.

#define _BSD_SOURCE

#include <sys/types.h>

#include <unistd.h>

#include <grp.h>

#include <stdlib.h>

#define fatal_error() abort()

static void sanitize_privilege_drop_check(uid_t olduid, gid_t oldgid)

{

 if (seteuid(olduid) != -1)

 {

 /* Privileges can be restored, handle error */

 fatal_error();

 }

 if (setegid(oldgid) != -1)

 {

 /* Privileges can be restored, handle error */

 fatal_error();

 }

}

void badprivilegedroporder(void) {

 uid_t

 newuid = getuid(),

 olduid = geteuid();

 gid_t

 newgid = getgid(),

 oldgid = getegid();

 if (olduid == 0) {

 /* drop ancillary groups IDs only possible for root */

 if (setgroups(1, &newgid) == -1) {

 /* handle error condition */

 fatal_error();

 }

 }

3-494

 Bad order of dropping privileges

 if (setgid(getgid()) == -1) {

 /* handle error condition */

 fatal_error();

 }

 if (setuid(getuid()) == -1) {

 /* handle error condition */

 fatal_error();

 }

 sanitize_privilege_drop_check(olduid, oldgid);

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: bad_privilege_drop_order
Impact: High

External Websites
• CWE-250
• CWE-696
• CERT-C — POS36-C

Introduced in R2016b

3-495

http://cwe.mitre.org/data/definitions/250.html
http://cwe.mitre.org/data/definitions/696.html
https://www.securecoding.cert.org/confluence/x/dgL7

3 Checks

Bitwise and arithmetic operation on the same data
Statement with mixed bitwise and arithmetic operations

Description

Bitwise and arithmetic operation on a same data detects statements with bitwise
and arithmetic operations on the same variable or expression.

Risk

Mixed bitwise and arithmetic operations do compile. However, the size of integer types
affects the result of these mixed operations. Mixed operations also reduce readability and
maintainability.

Fix

Separate bitwise and arithmetic operations, or use only one type of operation per
statement.

Examples

Shift and Addition

unsigned int bitwisearithmix()

{

 unsigned int var = 50;

 var += (var << 2) + 1;

 return var;

}

This example shows bitwise and arithmetic operations on the variable var. var is shifted
by two (bitwise), then increased by 1 and added to itself (arithmetic).

Correction — Arithmetic Operations Only

You can reduce this expression to arithmetic-only operations: var + (var << 2) is
equivalent to var * 5.

3-496

 Bitwise and arithmetic operation on the same data

unsigned int bitwisearithmix()

{

 unsigned int var = 50;

 var = var * 5 +1;

 return var;

}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: bitwise_arith_mix
Impact: Low

External Websites
• INT14-C: Avoid performing arithmetic and bitwise operations on the same data
• CWE-710: Coding Standards Violation

Introduced in R2016b

3-497

https://www.securecoding.cert.org/confluence/x/dgAV
http://cwe.mitre.org/data/definitions/710.html

3 Checks

Bitwise operation on negative value
Undefined behavior for bitwise operations on negative values

Description

Bitwise operation on negative value detects bitwise operators (>>, ^, |, ~, but, not,
&) used on signed integer variables with negative values.

Risk

If the value of the signed integer is negative, bitwise operation results can be unexpected
because:

• Bitwise operations on negative values are compiler-specific.
• Unexpected calculations can lead to additional vulnerabilities, such as buffer

overflow.

Fix

When performing bitwise operations, use unsigned integers to avoid unexpected results.

Examples

Right-Shift of Negative Integer

#include <stdio.h>

#include <stdarg.h>

static void demo_sprintf(const char *format, ...)

{

 int rc;

 va_list ap;

 char buf[sizeof("256")];

 va_start(ap, format);

 rc = vsprintf(buf, format, ap);

3-498

 Bitwise operation on negative value

 if (rc == -1 || rc >= sizeof(buf)) {

 /* Handle error */

 }

 va_end(ap);

}

void bug_bitwiseneg()

{

 int stringify = 0x80000000;

 demo_sprintf("%u", stringify >> 24);

}

In this example, the statement demo_sprintf("%u", stringify >> 24) stops the
program unexpectedly. You expect the result of stringify >> 24 to be 0x80. However,
the actual result is 0xffffff80 because stringify is signed and negative. The sign bit
is also shifted.

Correction — Add unsigned Keyword

By adding the unsigned keyword, stringify is not negative and the right-shift
operation gives the expected result of 0x80.

#include <stdio.h>

#include <stdarg.h>

static void demo_sprintf(const char *format, ...)

{

 int rc;

 va_list ap;

 char buf[sizeof("256")];

 va_start(ap, format);

 rc = vsprintf(buf, format, ap);

 if (rc == -1 || rc >= sizeof(buf)) {

 /* Handle error */

 }

 va_end(ap);

}

void corrected_bitwiseneg()

{

 unsigned int stringify = 0x80000000;

 demo_sprintf("%u", stringify >> 24);

}

3-499

3 Checks

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: bitwise_neg
Impact: Medium

External Websites
• INT13-C. Use bitwise operators only on unsigned operands
• CWE-682: Incorrect Calculation

Introduced in R2016b

3-500

https://www.securecoding.cert.org/confluence/x/BoAD
https://cwe.mitre.org/data/definitions/682.html

 Opening previously opened resource

Opening previously opened resource
Opening an already opened file

Description

Opening previously opened resource checks for file opening functions that are
opening an already opened file.

Risk

If you open a resource multiple times, you can encounter:

• A race condition when accessing the file.
• Undefined or unexpected behavior for that file.
• Portability issues when you run your program on different targets.

Fix

Once a resource is open, close the resource before reopening.

Examples

File Reopened With New Permissions

#include <stdio.h>

const char* logfile = "my_file.log";

void doubleresourceopen()

{

 FILE* fpa = fopen(logfile, "w");

 if (fpa == NULL) {

 return;

 }

 (void)fprintf(fpa, "Writing");

 FILE* fpb = fopen(logfile, "r");

3-501

3 Checks

 (void)fclose(fpa);

 (void)fclose(fpb);

}

In this example, a logfile is opened in the first line of this function with write
privileges. Halfway through the function, the logfile is opened again with read
privileges.

Correction — Close Before Reopening

One possible correction is to close the file before reopening the file with different
privileges.

#include <stdio.h>

const char* logfile = "my_file.log";

void doubleresourceopen()

{

 FILE* fpa = fopen(logfile, "w");

 if (fpa == NULL) {

 return;

 }

 (void)fprintf(fpa, "Writing");

 (void)fclose(fpa);

 FILE* fpb = fopen(logfile, "r");

 (void)fclose(fpb);

}

Result Information
Group: Resources
Language: C | C++
Default: On
Command-Line Syntax: double_resource_open
Impact: Medium

External Websites
• CWE-362
• CWE-675
• CERT C — FIO24–C

3-502

http://cwe.mitre.org/data/definitions/362.html
http://cwe.mitre.org/data/definitions/675.html
https://www.securecoding.cert.org/confluence/x/pwA1

 Opening previously opened resource

Introduced in R2016b

3-503

3 Checks

Abnormal termination of exit handler
Exit handler function interrupts the normal execution of a program

Description

Abnormal termination of exit handler looks for registered exit handlers. Exit
handlers are registered with specific functions such as atexit, (WinAPI) _onexit, or
at_quick_exit(). If the exit handler calls a function that interrupts the program’s
expected termination sequence, Polyspace raises a defect. Some functions that can cause
abnormal exits are exit, abort, longjmp, or (WinAPI) _onexit.

Risk

If your exit handler terminates your program, you can have undefined behavior.
Abnormal program termination means other exit handlers are not invoked. These
additional exit handlers may do additional clean up or other required termination steps.

Fix

In inside exit handlers, remove calls to functions that prevent the exit handler from
terminating normally.

Examples

Exit Handler With Call to exit

#include <stdlib.h>

volatile int some_condition = 1;

void demo_exit1(void)

{

 /* ... Cleanup code ... */

 return;

}

void exitabnormalhandler(void)

3-504

 Abnormal termination of exit handler

{

 if (some_condition)

 {

 /* Clean up */

 exit(0);

 }

 return;

}

int demo_install_exitabnormalhandler(void)

{

 if (atexit(demo_exit1) != 0) /* demo_exit1() performs additional cleanup */

 {

 /* Handle error */

 }

 if (atexit(exitabnormalhandler) != 0)

 {

 /* Handle error */

 }

 /* ... Program code ... */

 return 0;

}

In this example, demo_install_exitabnormalhandler registers two exit handlers,
demo_exit1 and exitabnormalhandler. Exit handlers are invoked in the reverse
order of which they are registered. When the program ends, exitabnormalhandler
runs, then demo_exit1. However, exitabnormalhandler calls exit interrupting the
program exit process. Having this exit inside an exit handler causes undefined behavior
because the program is not finished cleaning up safely.

Correction — Remove exit from Exit Handler

One possible correction is to let your exit handlers terminate normally. For this example,
exit is removed from exitabnormalhandler, allowing the exit termination process to
complete as expected.

#include <stdlib.h>

volatile int some_condition = 1;

void demo_exit1(void)

{

 /* ... Cleanup code ... */

 return;

3-505

3 Checks

}

void exitabnormalhandler(void)

{

 if (some_condition)

 {

 /* Clean up */

 /* Return normally */

 }

 return;

}

int demo_install_exitabnormalhandler(void)

{

 if (atexit(demo_exit1) != 0) /* demo_exit1() continues clean up */

 {

 /* Handle error */

 }

 if (atexit(exitabnormalhandler) != 0)

 {

 /* Handle error */

 }

 /* ... Program code ... */

 return 0;

}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: exit_abnormal_handler
Impact: Medium

External Websites
• CWE–705
• CERT C — ENV32-C

Introduced in R2016b

3-506

http://cwe.mitre.org/data/definitions/705.html
https://www.securecoding.cert.org/confluence/x/voAg

 Hard-coded object size used to manipulate memory

Hard-coded object size used to manipulate memory
Memory manipulation with hard-coded size instead of sizeof

Description

Hard-coded object size used to manipulate memory occurs on constants that are
memory size arguments for memory functions such as malloc or memset.

Risk

If you hard code object size, your code is not portable to architectures with different type
sizes. If the constant value is not the same as the object size, the buffer might or might
not overflow.

Fix

For the size argument of memory functions, use sizeof(object).

Examples

Assume 4-Byte Integer Pointers

#include <stddef.h>

#include <stdlib.h>

enum {

 SIZE3 = 3,

 SIZE20 = 20

};

extern void fill_ints(int **matrix, size_t nb, size_t s);

void bug_hardcodedmemsize()

{

 size_t i, s;

 s = 4;

 int **matrix = (int **)calloc(SIZE20, s);

3-507

3 Checks

 if (matrix == NULL) {

 return; /* Indicate calloc() failure */

 }

 fill_ints(matrix, SIZE20, s);

 free(matrix);

}

In this example, the memory allocation function calloc is called with a memory size
of 4. The memory is allocated for an integer pointer, which can be a more or less than 4
bytes depending on your target. If the integer pointer is not 4 bytes, your program can
fail.

Correction — Use sizeof(int *)

When calling calloc, replace the hard-coded size with a call to sizeof. This change
makes your code more portable.

#include <stddef.h>

#include <stdlib.h>

enum {

 SIZE3 = 3,

 SIZE20 = 20

};

extern void fill_ints(int **matrix, size_t nb, size_t s);

void corrected_hardcodedmemsize()

{

 size_t i, s;

 s = sizeof(int *);

 int **matrix = (int **)calloc(SIZE20, s);

 if (matrix == NULL) {

 return; /* Indicate calloc() failure */

 }

 fill_ints(matrix, SIZE20, s);

 free(matrix);

}

Result Information
Group: Good Practice
Language: C | C++
Default: Off

3-508

 Hard-coded object size used to manipulate memory

Command-Line Syntax: hard_coded_mem_size
Impact: Low

External Websites
• EXP09-C: Use sizeof to determine the size of a type or variable
• CWE-805: Buffer Access with Incorrect Length Value

Introduced in R2016b

3-509

https://www.securecoding.cert.org/confluence/display/c/EXP09-C.+Use+sizeof+to+determine+the+size+of+a+type+or+variable
http://cwe.mitre.org/data/definitions/805.html

3 Checks

Missing reset of a freed pointer
Pointer free not followed by a reset statement to clear leftover data

Description

Missing reset of a freed pointer detects pointers that have been freed and not
reassigned another value. After freeing a pointer, the memory data is still accessible. To
clear this data, the pointer must also be set to NULL or another value.

Risk

Not resetting pointers can cause dangling pointers. Dangling pointers can cause:

• Freeing already freed memory.
• Reading from or writing to already freed memory.
• Hackers executing code stored in freed pointers or with vulnerable permissions.

Fix

After freeing a pointer, if it is not immediately assigned to another valid address, set the
pointer to NULL.

Examples

Free Without Reset

#include <stdlib.h>

enum {

 SIZE3 = 3,

 SIZE20 = 20

};

void missingfreedptrreset()

{

 static char *str = NULL;

3-510

 Missing reset of a freed pointer

 if (str == NULL)

 str = (char *)malloc(SIZE20);

 if (str != NULL)

 free(str);

}

In this example, the pointer str is freed at the end of the program. The next call to
bug_missingfreedptrrese can fail because str is not NULL and the initialization to
NULL can be invalid.

Correction — Redefine free to Free and Reset

One possible correction is to customize free so that when you free a pointer, it is
automatically reset.

#include <stdlib.h>

enum {

 SIZE3 = 3,

 SIZE20 = 20

};

static void sanitize_free(void **p)

{

 if ((p != NULL) && (*p != NULL))

 {

 free(*p);

 *p = NULL;

 }

}

#define free(X) sanitize_free((void **)&X)

void missingfreedptrreset()

{

 static char *str = NULL;

 if (str == NULL)

 str = (char *)malloc(SIZE20);

 if (str != ((void *)0))

 {

 free(str);

3-511

3 Checks

 }

}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: missing_freed_ptr_reset
Impact: Low

See Also
Use of previously freed pointer | Invalid free of pointer

External Websites
• CERT C — MEM01-C
• CWE-416
• CWE-415

Introduced in R2016b

3-512

https://www.securecoding.cert.org/confluence/x/uAE
http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/415.html

 Missing break of switch case

Missing break of switch case
No comments at the end of switch case without a break statement

Description

Missing break of switch case looks for switch cases that do not end in a break
statement. If the case does not have a code comment after it, Polyspace assumes the
missing break is not intentional and raises a defect.

Risk

Switch cases without break statements fall through to the next switch case. If this fall-
through is not intended, the switch case can unintentionally execute code and end the
switch with unexpected results.

Fix

If you do not want a break for the highlighted switch case, add a comment to your code to
document why this case falls through to the next case. This comment removes the defect
from your results and makes your code more maintainable.

If you forgot the break, add it before the end of the switch case.

Examples

Switch Without Break Statements

enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z } widget_type;

extern void demo_do_something_for_WE_W(void);

extern void demo_do_something_for_WE_X(void);

extern void demo_report_error(void);

void bug_missingswitchbreak(enum WidgetEnum wt)

{

 /*

3-513

3 Checks

 In this non-compliant code example, the case where widget_type is WE_W lacks a

 break statement. Consequently, statements that should be executed only when

 widget_type is WE_X are executed even when widget_type is WE_W.

 */

 switch (wt)

 {

 case WE_W:

 demo_do_something_for_WE_W();

 case WE_X:

 demo_do_something_for_WE_X();

 default:

 /* Handle error condition */

 demo_report_error();

 }

}

In this example, there are two cases without break statements. When wt is WE_W, the
statements for WE_W, WE_X, and the default case execute because the program falls
through the two cases without a break. No defect is raised on the default case or last
case because it does not need a break statement.

Correction — Add a Comment or break

To fix this example, either add a comment to mark and document the acceptable fall-
through or add a break statement to avoid fall-through. In this example, case WE_W is
supposed to fall through, so a comment is added to explicitly state this action. For the
second case, a break statement is added to avoid falling through to the default case.

enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z } widget_type;

extern void demo_do_something_for_WE_W(void);

extern void demo_do_something_for_WE_X(void);

extern void demo_report_error(void);

void corrected_missingswitchbreak(enum WidgetEnum wt)

{

 switch (wt)

 {

 case WE_W:

 demo_do_something_for_WE_W();

 /* fall through to WE_X*/

 case WE_X:

 demo_do_something_for_WE_X();

 break;

3-514

 Missing break of switch case

 default:

 /* Handle error condition */

 demo_report_error();

 }

}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: missing_switch_break
Impact: Low

See Also
Missing case for switch condition

External Websites
• CERT C — MSC17-C
• CWE-484

Introduced in R2016b

3-515

https://www.securecoding.cert.org/confluence/x/YIFLAQ
http://cwe.mitre.org/data/definitions/484.html

3 Checks

Privilege drop not verified
Verify privilege relinquishment was successful

Description

Privilege drop not verified detects calls to functions that relinquish privileges. If you
do not verify that the privileges were dropped before the end of your function, a defect is
raised.

Risk

If privilege relinquishment fails, an attacker can regain elevated privileges and have
more access to your program than intended. This security hole can cause unexpected
behavior in your code if left open.

Fix

Before the end of scope, verify that the privileges that you dropped were actually
dropped.

Examples

Drop Privileges Within a Function

#define _BSD_SOURCE

#include <sys/types.h>

#include <unistd.h>

#include <grp.h>

#define fatal_error() abort()

extern int need_more_privileges;

void missingprivilegedropcheck() {

 /* Code intended to run with elevated privileges */

 /* Temporarily drop elevated privileges */

 if (seteuid(getuid()) != 0) {

 /* Handle error */

3-516

 Privilege drop not verified

 fatal_error();

 }

 /* Code intended to run with lower privileges */

 if (need_more_privileges) {

 /* Restore elevated privileges */

 if (seteuid(0) != 0) {

 /* Handle error */

 fatal_error();

 }

 /* Code intended to run with elevated privileges */

 }

 /* ... */

 /* Permanently drop elevated privileges */

 if (setuid(getuid()) != 0) {

 /* Handle error */

 fatal_error();

 }

 /* Code intended to run with lower privileges */

}

In this example, privileges are elevated and dropped to run code with the intended
privilege level. When privileges are dropped, the privilege level before exiting the
function body is not verified. A malicious attacker can regain their elevated privileges.

Correction — Verify Privilege Drop

One possible correction is to use setuid to verify that the privileges were dropped.

#define _BSD_SOURCE

#include <sys/types.h>

#include <unistd.h>

#include <grp.h>

#define fatal_error() abort()

extern int need_more_privileges;

void missingprivilegedropcheck() {

 /* Store the privileged ID for later verification */

 uid_t privid = geteuid();

 /* Code intended to run with elevated privileges */

3-517

3 Checks

 /* Temporarily drop elevated privileges */

 if (seteuid(getuid()) != 0) {

 /* Handle error */

 fatal_error();

 }

 /* Code intended to run with lower privileges */

 if (need_more_privileges) {

 /* Restore elevated Privileges */

 if (seteuid(privid) != 0) {

 /* Handle error */

 fatal_error();

 }

 /* Code intended to run with elevated privileges */

 }

 /* ... */

 /* Restore privileges if needed */

 if (geteuid() != privid) {

 if (seteuid(privid) != 0)

 {

 /* Handle error */

 fatal_error();

 }

 }

 /* Permanently drop privileges */

 if (setuid(getuid()) != 0)

 {

 /* Handle error */

 fatal_error();

 }

 if (setuid(0) != -1)

 {

 /* Privileges can be restored, handle error */

 fatal_error();

 }

 /* Code intended to run with lower privileges; */

}

3-518

 Privilege drop not verified

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: missing_privilege_drop_check
Impact: High

External Websites
• CWE–250
• CERT-C — POS37-C

Introduced in R2016b

3-519

http://cwe.mitre.org/data/definitions/250.html
https://www.securecoding.cert.org/confluence/x/WIAAAQ

3 Checks

Returned value of a sensitive function not checked
Sensitive functions called without checking for unexpected return values and errors

Description

Returned value of a sensitive function not checked occurs when you call sensitive
standard functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or
vulnerable tasks:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive or critical
sensitive tasks, your program can behave unexpectedly. Errors from these functions can
propagate throughout the program causing incorrect output, security vulnerabilities, and
possibly system failures.

3-520

 Returned value of a sensitive function not checked

Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function
to void. Polyspace does not raise this defect for sensitive functions cast to void. This
resolution is not accepted for critical sensitive functions because they perform more
vulnerable tasks.

Examples

Sensitive Function Return Ignored

#include <pthread.h>

void initialize() {

 pthread_attr_t attr;

 pthread_attr_init(&attr);

}

This example shows a call to the sensitive function pthread_attr_init. The return
value of pthread_attr_init is ignored, causing a defect.

Correction — Cast Function to (void)

One possible correction is to cast the function to void. This fix informs Polyspace and any
reviewers that you are explicitly ignoring the return value of the sensitive function.

#include <pthread.h>

void initialize() {

 pthread_attr_t attr;

 (void)pthread_attr_init(&attr);

}

Correction — Test Return Value

One possible correction is to test the return value of pthread_attr_init to check for
errors.

3-521

3 Checks

#include <pthread.h>

#define fatal_error() abort()

void initialize() {

 pthread_attr_t attr;

 int result;

 result = pthread_attr_init(&attr);

 if (result != 0) {

 /* Handle error */

 fatal_error();

 }

}

Critical Function Return Ignored

#include <pthread.h>

extern void *start_routine(void *);

void returnnotchecked() {

 pthread_t thread_id;

 pthread_attr_t attr;

 void *res;

 (void)pthread_attr_init(&attr);

 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0));

 pthread_join(thread_id, &res);

}

In this example, two critical functions are called: pthread_create and pthread_join.
The return value of the pthread_create is ignored by casting to void, but because
pthread_create is a critical function (not just a sensitive function), Polyspace does
not ignore this Return value of a sensitive function not checked defect. The other critical
function, pthread_join, returns value that is ignored implicitly. pthread_join uses
the return value of pthread_create, which was not checked.

Correction — Test the Return Value of Critical Functions

The correction for this defect is to check the return value of these critical functions to
verify the function performed as expected.

#include <pthread.h>

#define fatal_error() abort()

3-522

 Returned value of a sensitive function not checked

extern void *start_routine(void *);

void returnnotchecked() {

 pthread_t thread_id;

 pthread_attr_t attr;

 void *res;

 int result;

 (void)pthread_attr_init(&attr);

 result = pthread_create(&thread_id, &attr, &start_routine, NULL);

 if (result != 0) {

 /* Handle error */

 fatal_error();

 }

 result = pthread_join(thread_id, &res);

 if (result != 0) {

 /* Handle error */

 fatal_error();

 }

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: return_not_checked
Impact: High

External Websites
• CWE–252
• CWE–754
• CERT-C — ERR33–C
• CERT-C — POS51–C

Introduced in R2016b

3-523

http://cwe.mitre.org/data/definitions/252.html
http://cwe.mitre.org/data/definitions/754.html
https://www.securecoding.cert.org/confluence/x/w4C4Ag
https://www.securecoding.cert.org/confluence/x/roBcBQ

3 Checks

Typedef mismatch

Mismatch between typedef statements

Description

Typedef mismatch detects typedef statements with different underlying types for
these fundamental types:

• size_t

• ssize_t

• wchar_t

• ptrdiff_t

Risk

If you change the underlying type of size_t, ssize_t, wchar_t, or ptrdiff_t, you
have inconsistent definitions of the same type. Compilation units with different include
paths can potentially use different-sized types causing conflicts in your program.

For example, say that you define a function in one compilation unit that redefines
size_t as unsigned long. But in another compilation unit that uses the size_t
definition from <stddef.h>, you use the same function as an extern declaration.
Your program will encounter a mismatch between the function declaration and function
definition.

Fix

Use consistent type definitions. For example:

• Remove custom type definitions for these fundamental types. Only use system
definitions.

• Use the same size for all compilation units. Move your typedef to a shared header
file.

3-524

 Typedef mismatch

Examples

Two Definitions of size_t

file1.c

typedef unsigned char size_t;

void func2()

{

 size_t var = 0;

 /*... more code ... */

}

file2.c

#include <stddef.h>

void func1()

{

 size_t var = 0;

 /*... more code ... */

}

In this example, Polyspace flags the definition of size_t in file1.c as a defect. This
definition is a typedef mismatch because another file in your project, file2.c, includes
stddef.h, which defines size_t as unsigned long.

Correction — Use System Definition

One possible correction is to use the system definition of size_t in stddef.h to avoid
conflicting type definitions.

file1.c

#include <stddef.h>

void func2()

{

 size_t var = 0;

 /*... more code ... */

}

3-525

3 Checks

file2.c

#include <stddef.h>

void func1()

{

 size_t var = 0;

 /*... more code ... */

}

Correction — Use Shared Header File

One possible correction is to use a shared header file to store your type definition that
gets included in both files.

types.h

typedef unsigned char size_t;

file1.c

#include "types.h"

void func2()

{

 size_t var = 0;

 /*... more code ... */

}

file2.c

#include "types.h"

void func1()

{

 size_t var = 0;

 /*... more code ... */

}

Result Information
Group: Programming
Language: C | C++
Default: On

3-526

 Typedef mismatch

Command-Line Syntax: typedef_mismatch
Impact: High

See Also
Declaration mismatch

Introduced in R2016b

3-527

3 Checks

Unsafe conversion from string to numerical value

String to number conversion without validation checks

Description

Unsafe conversion from string to numerical value detects conversions from strings
to integer or floating-point values. If your conversion method does not include robust
error handling, a defect is raised.

Risk

Converting a string to numerical value can cause data loss or misinterpretation. Without
validation of the conversion or error handling, your program continues with invalid
values.

Fix

• Add additional checks to validate the numerical value.
• Use a more robust string-to-numeric conversion function such as strtol, strtoll,

strtoul, or strtoull.

Examples

Conversion With atoi

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

static int demo_check_string_not_empty(char *s)

{

 if (s != NULL)

 return strlen(s) > 0; /* check string null-terminated and not empty */

 else

3-528

 Unsafe conversion from string to numerical value

 return 0;

}

int unsafestrtonumeric(char* argv1)

{

 int s = 0;

 if (demo_check_string_not_empty(argv1))

 {

 s = atoi(argv1);

 }

 return s;

}

In this example, argv1 is converted to an integer with atoi. atoi does not provide
errors for an invalid integer string. The conversion can fail unexpectedly.

Correction — Use strtol instead

One possible correction is to use strtol to validate the input string and the converted
integer.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <limits.h>

#include <errno.h>

static int demo_check_string_not_empty(char *s)

{

 if (s != NULL)

 return strlen(s) > 0; /* check string null-terminated and not empty */

 else

 return 0;

}

int unsafestrtonumeric(char *argv1)

{

 char *c_str = argv1;

 char *end;

 long sl;

 if (demo_check_string_not_empty(c_str))

 {

 errno = 0; /* set errno for error check */

3-529

3 Checks

 sl = strtol(c_str, &end, 10);

 if (end == c_str)

 {

 (void)fprintf(stderr, "%s: not a decimal number\n", c_str);

 }

 else if ('\0' != *end)

 {

 (void)fprintf(stderr, "%s: extra characters: %s\n", c_str, end);

 }

 else if ((LONG_MIN == sl || LONG_MAX == sl) && ERANGE == errno)

 {

 (void)fprintf(stderr, "%s out of range of type long\n", c_str);

 }

 else if (sl > INT_MAX)

 {

 (void)fprintf(stderr, "%ld greater than INT_MAX\n", sl);

 }

 else if (sl < INT_MIN)

 {

 (void)fprintf(stderr, "%ld less than INT_MIN\n", sl);

 }

 else

 {

 return (int)sl;

 }

 }

 return 0;

}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: unsafe_str_to_numeric
Impact: Low

External Websites
• CWE–676
• CWE–20
• CERT-C — ERR34-C

3-530

http://cwe.mitre.org/data/definitions/676.html
http://cwe.mitre.org/data/definitions/20.html
https://www.securecoding.cert.org/confluence/x/6AQ

 Unsafe conversion from string to numerical value

Introduced in R2016b

3-531

4

Functions, Properties, Classes, and
Apps

4 Functions, Properties, Classes, and Apps

pslinkfun
Manage model analysis at the command line

Syntax

pslinkfun('annotations','type',typeValue,'kind',kindValue,

Name,Value)

pslinkfun('openresults',systemName)

pslinkfun('settemplate',psprjFile)

prjTemplate = pslinkfun('gettemplate')

pslinkfun('advancedoptions')

pslinkfun('enablebacktomodel')

pslinkfun('help')

pslinkfun('metrics')

pslinkfun('jobmonitor')

pslinkfun('stop')

Description

pslinkfun('annotations','type',typeValue,'kind',kindValue,

Name,Value) adds an annotation of type typeValue and kind kindValue to the
selected block in the model. You can specify a different block using a Name,Value pair
argument. You can also add notes about a severity classification, an action status, or
other comments using Name,Value pairs.

In the generated code associated with the annotated block, Polyspace adds code
comments before and after the lines of code. Polyspace reads these comments and marks
Polyspace results of the specified kind with the annotated information.

Syntax limitations:

• You can have only one annotation per block. If a block produces both a rule violation
and an error, you can annotate only one type.

4-2

 pslinkfun

• Even though you apply annotations to individual blocks, the scope of the annotation
can be larger. The generated code from one block can overlap with another, causing
the annotation to also overlap.

For example, consider this model. The first summation block has a Polyspace
annotation, but the second does not.

However, the associated generated code adds all three inputs in one line of code.

/* polyspace:begin<RTE:OVFL:Medium:Fix>*/

annotate_y.Out1=(annotate_u.In1+annotate_U.In2)+annotate_U.In3;

/* polyspace:end<RTE:OVFL:Medium:Fix> */

Therefore, the annotation justifies both summations.

pslinkfun('openresults',systemName) opens the Polyspace results associated
with the model or subsystem systemName in the Polyspace environment.

pslinkfun('settemplate',psprjFile) sets the configuration file for new
verifications.

prjTemplate = pslinkfun('gettemplate') returns the template configuration file
used for new analyses.

pslinkfun('advancedoptions') opens the advanced verification options window to
configure additional options for the current model.

pslinkfun('enablebacktomodel') enables the back-to-model feature of the
Simulink plug-in. If your Polyspace results do not properly link to back to the model
blocks, run this command.

pslinkfun('help') opens the Polyspace documentation in a separate window. Use
this option for only pre-R2013b versions of MATLAB.

pslinkfun('metrics') opens the Polyspace Metrics interface.

4-3

4 Functions, Properties, Classes, and Apps

pslinkfun('jobmonitor') opens the Polyspace Job Monitor to display remote
verifications in the queue.

pslinkfun('stop') kills the code analysis that is currently running. Use this option
for local analyses only.

Examples

Annotate a Block and Run a Polyspace Bug Finder Analysis

Use the Polyspace annotation function to annotate a block and see the annotation in the
analysis results.

In the example model WhereAreTheErrors_v2, add an annotation to the switch block for
MISRA C rule 13.7 violations with a comment, a severity, and a status.

model = 'WhereAreTheErrors_v2';

open(model)

pslinkfun('annotations','type','Misra-C', 'kind', '13.7','block',...

 'WhereAreTheErrors_v2/Switch1','status','fix','comment','must fix')

In the open model, you can see a Polyspace annotation added to the Switch block.

Generate code for the model and run an analysis. After the analysis is finished, open the
results in the Polyspace environment:

slbuild(model)

opts = pslinkoptions(model);

opts.VerificationMode = 'BugFinder';

opts.VerificationSettings = 'PrjConfigAndMisra';

pslinkrun(model,opts)

pslinkfun('openresults',model)

The five MISRA C 13.7 rule violations are annotated with the information you added to
the switch block. The annotations appear in the Status and Comment columns.

Add Batch Options to Default Configuration Template

Change advanced Polyspace options and set the new configuration as a template.

Load the model WhereAreTheErrors_v2 and open the advanced options window.

model = 'WhereAreTheErrors_v2';

4-4

 pslinkfun

load_system(model)

pslinkfun('advancedoptions')

In the Distributed Computing pane, select the options Batch and Add to results
repository.

Set the configuration template for new Polyspace analyses to have these options.

pslinkfun('settemplate',fullfile(cd,'pslink_config',...

 'WhereAreTheErrors_v2_config.psprj'))

View the current Polyspace template.

template = pslinkfun('gettemplate')

template =

C:\ModelLinkDemo\pslink_config\WhereAreTheErrors_v2_config.psprj

View Polyspace Queue and Metrics

Run a remote analysis, view the analysis in the queue, and review the metrics.

Before performing this example, check that your Polyspace configuration is set up for
remote analysis and Polyspace Metrics.

Build the model WhereAreTheErrors_v2, create a Polyspace options object, set the
verification mode, and open the advanced options window.

model = 'WhereAreTheErrors_v2';

load_system(model)

slbuild(model)

opts = pslinkoptions(model);

opts.VerificationMode = 'BugFinder';

pslinkfun('advancedoptions')

In the Distributed Computing pane, select the Batch and Add to results repository
options.

Run Polyspace, then open the Job Monitor to monitor your remote job.

pslinkrun(model,opts)

pslinkfun('jobmonitor')

After your job is finished, open the metrics server to see your job in the repository.

4-5

4 Functions, Properties, Classes, and Apps

pslinkfun('metrics')

Input Arguments

typeValue — type of result
'DEFECT' | 'MISRA-C' | 'MISRA-AC-AGC' | 'MISRA-CPP' | 'JSF'

The type of result with which to annotate the block, specified as:

• ‘DEFECT’ for defects.
• ‘MISRA-C’ for MISRA C coding rule violations (C code only).
• ‘MISRA-AC-AGC’ for MISRA C coding rule violations (C code only).
• ‘MISRA-CPP’ for MISRA C++ coding rule violations (C++ code only).
• ‘JSF’ for JSF C++ coding rule violations (C++ code only).

Example: ‘type’,'MISRA-C'

kindValue — specific check or coding rule
check acronym | rule number

The specific check or coding rule specified by the acronym of the check or the coding rule
number. For the specific input for each type of annotation, see the following table.

type Value kind Values

‘DEFECT’ Use the abbreviation associated with the type of defect that you
want to annotate. For example, 'int_ovfl' – Integer overflow.

For the list of possible checks, see: “Polyspace Bug Finder
Results”.

‘MISRA-C’ Use the rule number that you want to annotate. For example,
'2.2'.

For the list of supported MISRA C rules and their numbers, see
“MISRA C:2004 and MISRA AC AGC Coding Rules”.

‘MISRA-AC-AGC’ Use the rule number that you want to annotate. For example,
'2.2'.

For the list of supported MISRA C rules and their numbers, see
“MISRA C:2004 and MISRA AC AGC Coding Rules”.

4-6

 pslinkfun

type Value kind Values

‘MISRA-CPP’ Use the rule number that you want to annotate. For example,
'0-1-1'.

For the list of supported MISRA C++ rules and their numbers, see
“MISRA C++ Coding Rules”.

‘JSF’ Use the rule number that you want to annotate. For example,
'3'.

For the list of supported JSF C++ rules and their numbers, see
“JSF C++ Coding Rules”.

Example: pslinkfun('annotations','type','MISRA-CPP','kind','1-2-3')

Data Types: char

systemName — Simulink model
system | subsystem

Simulink model specified by the system or subsystem name.
Example: pslinkfun('openresults','WhereAreTheErrors_v2')

psprjFile — Polyspace project file
standard Polyspace template (default) | absolute path to .psprj file

Polyspace project file specified as the absolute path to the .psprj project file. If
psprjFile is empty, Polyspace uses the standard Polyspace template file. New
Polyspace projects start with this project configuration.
Example: pslinkfun('settemplate', fullfile(matlabroot,
'polyspace', 'examples', 'cxx', 'Bug_Finder_Example',

'Bug_Finder_Example.bf.psprj'));

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘block’,’MyModel\Sum’, ‘status’,’fix’

4-7

4 Functions, Properties, Classes, and Apps

'block' — block to be annotated
gcb (default) | block name

The block you want to annotate specified by the block name. If you do not use this option,
the block returned by the function gcb is annotated.

Example: 'block','MyModel\Sum'

'class' — severity of the check
'high' | 'medium' | 'low' | 'not a defect' | 'unset'

Severity of the check specified as high, medium, low, not a defect, or unset.

Example: 'class','high'

'status' — action status
'undecided' | 'investigate' | 'fix' | 'improve' | 'restart with different
options' | 'justify with annotation' | 'no action planned' | 'other'

Action status of the check specified as undecided, investigate, fix, improve,
restart with different options, justify with annotation, no action
planned, or other.

Example: 'status','no action planned'

'comment' — additional comments
character vector

Additional comments specified as a character vector. The comments provide more
information about why the results are justified.
Example: 'comment','defensive code'

See Also
pslinkrun | pslinkoptions | gcb

Introduced in R2014a

4-8

 pslinkoptions

pslinkoptions
Create options object to customize Polyspace runs from MATLAB command line

Syntax

opts = pslinkoptions(codegen)

opts = pslinkoptions(model)

opts = pslinkoptions(sfunc)

Description

opts = pslinkoptions(codegen) returns an options object with the configuration
options for code generated by codegen.

opts = pslinkoptions(model) returns an options object with the configuration
options for the Simulink model.

opts = pslinkoptions(sfunc) returns an options object with the configuration
options for the S-Function.

Examples

Use a Simulink model to create and edit an options objects

Load psdemo_model_link_sl and create a Polyspace® options object from the model:

load_system('psdemo_model_link_sl');

model_opt = pslinkoptions('psdemo_model_link_sl')

The model 'psdemo_model_link_sl' was saved in a previous release. The overflow diagnostic setting for Stateflow &

MATLAB Function blocks is now set to 'warning'. To change overflow diagnostic, set

Wrap on overflowin the Diagnostics: Data Validity pane of the Model Configuration Parameters

dialog box. For more information, see Wrap on overflow.

Start Compiling Command_Strategy

 mex('-IB:\matlab\polyspace\toolbox\pslink\pslinkdemos\psdemo_model_link_sl', '-IC:\TEMP\Bdoc16b_437511_11332\IB_CPU_7\tpd69d3549_cd69_4eee_ab7d_5fe111d6a4cd\UseaSimulinkmodeltocreateandeditanoptionsobjectsExample', '-c', '-outdir', 'C:\TEMP\Bdoc16b_437511_11332\IB_CPU_7\tpaec81fba_6959_4dcb_a4f3_ddf8cf2316dc', 'B:\matlab\polyspace\toolbox\pslink\pslinkdemos\psdemo_model_link_sl\command_strategy_file.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

4-9

4 Functions, Properties, Classes, and Apps

 mex('Command_Strategy.c', '-IB:\matlab\polyspace\toolbox\pslink\pslinkdemos\psdemo_model_link_sl', '-IC:\TEMP\Bdoc16b_437511_11332\IB_CPU_7\tpd69d3549_cd69_4eee_ab7d_5fe111d6a4cd\UseaSimulinkmodeltocreateandeditanoptionsobjectsExample', 'C:\TEMP\Bdoc16b_437511_11332\IB_CPU_7\tpaec81fba_6959_4dcb_a4f3_ddf8cf2316dc\command_strategy_file.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

Finish Compiling Command_Strategy

Exit

model_opt =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfig'

 OpenProjectManager: 1

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 AddToSimulinkProject: 0

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 ModelRefVerifDepth: 'All'

 ModelRefByModelRefVerif: 0

 AutoStubLUT: 0

 CxxVerificationSettings: 'PrjConfig'

 CheckConfigBeforeAnalysis: 'OnWarn'

The model is already configured for Embedded Coder®, so only the Embedded
Coder configuration options appear. Change the results folder name option and set
OpenProjectManager to true.

model_opt.ResultDir = 'results_v1_$ModelName$';

model_opt.OpenProjectManager = true

model_opt =

 ResultDir: 'results_v1_$ModelName$'

 VerificationSettings: 'PrjConfig'

 OpenProjectManager: 1

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

4-10

 pslinkoptions

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 AddToSimulinkProject: 0

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 ModelRefVerifDepth: 'All'

 ModelRefByModelRefVerif: 0

 AutoStubLUT: 0

 CxxVerificationSettings: 'PrjConfig'

 CheckConfigBeforeAnalysis: 'OnWarn'

Create and edit an options object for Embedded Coder at the command line

Create a Polyspace® options object called new_opt with Embedded Coder® parameters:

new_opt = pslinkoptions('ec')

new_opt =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfig'

 OpenProjectManager: 0

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 AddToSimulinkProject: 0

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 ModelRefVerifDepth: 'Current model only'

 ModelRefByModelRefVerif: 0

 AutoStubLUT: 1

 CxxVerificationSettings: 'PrjConfig'

 CheckConfigBeforeAnalysis: 'OnWarn'

To Follow the progress in the Polyspace interface, set the OpenProjectManager option
to true. Change the configuration to check for both checks and MISRA C® 2012 coding
rule violations:

4-11

4 Functions, Properties, Classes, and Apps

new_opt.OpenProjectManager = true;

new_opt.VerificationSettings = 'PrjConfigAndMisraC2012'

new_opt =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfigAndMisraC2012'

 OpenProjectManager: 1

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 AddToSimulinkProject: 0

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 ModelRefVerifDepth: 'Current model only'

 ModelRefByModelRefVerif: 0

 AutoStubLUT: 1

 CxxVerificationSettings: 'PrjConfig'

 CheckConfigBeforeAnalysis: 'OnWarn'

Create and edit an options object for TargetLink at the command line

Create a Polyspace® options object called new_opt with TargetLink® parameters:

new_opt = pslinkoptions('tl')

new_opt =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfig'

 OpenProjectManager: 0

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 AddToSimulinkProject: 0

4-12

 pslinkoptions

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 AutoStubLUT: 1

Set the OpenProjectManager option to true to follow the progress in the Polyspace
interface. Also change the configuration to check for both run-time errors and MISRA C®
coding rule violations:

new_opt.OpenProjectManager = true;

new_opt.VerificationSettings = 'PrjConfigAndMisra'

new_opt =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfigAndMisra'

 OpenProjectManager: 1

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 AddToSimulinkProject: 0

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 AutoStubLUT: 1

Input Arguments

codegen — Code generator
'ec' | 'tl'

Code generator, specified as either 'ec' for Embedded Coder® or 'tl' for TargetLink®.
Each argument creates a Polyspace options object with properties specific to that code
generator.

For a description of all configuration options and their values, see pslinkoptions
Properties.

4-13

4 Functions, Properties, Classes, and Apps

Example: ec_opt = pslinkoptions('ec')

Example: tl_opt = pslinkoptions('tl')

Data Types: char

model — Simulink model name
model name

Simulink model, specified by the model name. Creates a Polyspace options object with
the configuration options of that model. If you have not set any options, the object has the
default configuration options. If you have set a code generator, the object has the default
options for that code generator.

For a description of all configuration options and their values, see pslinkoptions
Properties.
Example: model_opt = pslinkoptions('my_model')

Data Types: char

sfunc — path to S-Function
character vector

Path to S-Function, specified as a character vector. Creates a Polyspace options object
with the configuration options for the S-function. If you have not set any options, the
object has the default configuration options.

For a description of all configuration options and their values, see pslinkoptions
Properties.
Example: sfunc_opt = pslinkoptions('path/to/sfunction')

Data Types: char

Output Arguments

opts — Polyspace configuration options
options object

Polyspace configuration options, returned as an options object. The object is used with
pslinkrun to run Polyspace from the MATLAB command line.

For the list of object properties, see pslinkoptions Properties.

4-14

 pslinkoptions

Example: opts= pslinkoptions('ec')
opts.VerificationSettings = 'Misra'

More About
• pslinkoptions Properties

See Also
pslinkfun | pslinkrun

Introduced in R2012a

4-15

4 Functions, Properties, Classes, and Apps

pslinkrun

Run Polyspace analysis on model, system, or S-Function

Syntax

resultsFolder = pslinkrun

resultsFolder = pslinkrun(target)

resultsFolder = pslinkrun(target,opts)

resultsFolder = pslinkrun(target,opts,asModelRef)

Description

resultsFolder = pslinkrun analyzes code generated from the current system using
the configuration options associated with the current system. It returns the location of
the results folder. The current system is the system returned by the command bdroot.

resultsFolder = pslinkrun(target) analyzes target with the configuration
options associated with the model containing target. Before you run an analysis, you
must:

• Generate code for models and subsystems.
• Compile S-Functions.

resultsFolder = pslinkrun(target,opts) analyzes target with the
configuration options from the options object opts. It returns the location of the results
folder.

resultsFolder = pslinkrun(target,opts,asModelRef) uses asModelRef to
specify which type of generated code to analyze—standalone code or model reference
code. This option is useful when you want to analyze only a referenced model instead of
an entire model hierarchy.

4-16

 pslinkrun

Examples

Build and Analyze Model from the Command Line

Use a Simulink model to generate code, set configuration options, and then run an
analysis from the command line.

Load and build the model WhereAreTheErrors to generate code.

model = 'WhereAreTheErrors';

load_system(model)

slbuild(model)

Create a Polyspace options object from the model and change the configuration to run a
Bug Finder analysis.

opts = pslinkoptions(model);

opts.VerificationMode = 'BugFinder';

opts.VerificationSettings = 'PrjConfigAndMisra2012';

Run Polyspace with your options object:

results = pslinkrun(model,opts)

The results are saved to the results_WhereAreTheErrors folder, listed in the
results variable.

Build and Analyze Referenced Model Code from the Command Line

Use a Simulink model to generate reference code, set configuration options, and then run
an analysis from the command line.

Load and build the model WhereAreTheErrors to generate code as if it is referenced by
another model:

model = 'WhereAreTheErrors';

load_system(model);

slbuild(model,'ModelReferenceRTWTargetOnly');

Create a Polyspace options object from the model and change the configuration to run a
Bug Finder analysis.

opts = pslinkoptions(model);

4-17

4 Functions, Properties, Classes, and Apps

opts.VerificationMode = 'BugFinder';

opts.VerificationSettings = 'PrjConfigAndMisra2012';

Run Polyspace with your options object:

results = pslinkrun(model,opts,true)

The results are saved to the results_mr_WhereAreTheErrors folder, listed in the
results variable.

Script Polyspace Analysis of Model Generated Code

This example shows how to run an analysis on code generated from a model with only
MATLAB functions and object.

Create custom configuration to use for multiple model analyses.

opts = polyspace.ModelLinkBugFinderOptions();

opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';

opts.Reporting.ReportOutputFormat = 'PDF';

opts.Reporting.EnableReportGeneration = true;

Generate code.

model = 'psdemo_model_link_sl';

load_system(model);

slbuild(model);

Add configuration to pslinkoptions object.

prjfile = opts.generateProject('model_link_opts');

mlopts = pslinkoptions(model);

mlopts.EnablePrjConfigFile = true;

mlopts.PrjConfigFile = prjfile;

mlopts.VerificationMode = 'BugFinder';

Run analysis.

results = pslinkrun(model);

After the analysis completes, results open automatically in the Polyspace interface.

• “Verify S-Function Code”

4-18

 pslinkrun

Input Arguments

target — Target of the analysis
bdroot (default) | model or system name | path to S-Function block

Target of the analysis specified as a character vector, with the model, system, or S-
function in single quotes. The default value is the system returned by bdroot.

Example: resultsFolder = pslinkrun('demo') where demo is the name of a model.

Example: resultsFolder = pslinkrun('path/to/sfunction')

Data Types: char

opts — Configuration options
options associated with target (default) | options object

Configuration options for the analysis, specified as a Polyspace options object. The
function pslinkoptions creates an options object. You can customize the options object
by changing the pslinkoption properties.

Example: pslinkrun('demo', opts_demo) where demo is the name of a model and
opts_demo is an options object.

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• If asModelRef is false (default), Polyspace analyzes code that is generated as
standalone code. This option is equivalent to choosing Verify Code Generated For
> Model in the Simulink Polyspace options.

• If asModelRef is true, Polyspace analyzes code that is generated as model referenced
code. This option is equivalent to choosing Verify Code Generated For >
Referenced Model in the Simulink Polyspace options.

Data Types: logical

Output Arguments

resultsFolder — Variable for location of the results folder
character vector

4-19

4 Functions, Properties, Classes, and Apps

Variable for location of the results folder, specified as a character vector. The default
value of this variable is results_$ModelName$. You can change this value in the
configuration options.
Data Types: char

More About
• “Recommended Model Settings for Code Analysis”

See Also
pslinkfun | pslinkoptions | pslinkoptions Properties

Introduced in R2012a

4-20

 polyspaceBugFinder

polyspaceBugFinder
Run Polyspace Bug Finder analysis from MATLAB

Syntax

polyspaceBugFinder

polyspaceBugFinder(projectFile)

polyspaceBugFinder(optsObject)

polyspaceBugFinder(projectFile, '-nodesktop')

polyspaceBugFinder(resultsFile)

polyspaceBugFinder('-results-dir',resultsFolder)

polyspaceBugFinder('-help')

polyspaceBugFinder('-sources',sourceFiles)

polyspaceBugFinder('-sources',sourceFiles,Name,Value)

Description

polyspaceBugFinder opens Polyspace Bug Finder.

polyspaceBugFinder(projectFile) opens a Polyspace project file in Polyspace Bug
Finder.

polyspaceBugFinder(optsObject) runs an analysis on the Polyspace options object
in MATLAB.

polyspaceBugFinder(projectFile, '-nodesktop') runs an analysis on the
Polyspace project file in MATLAB.

polyspaceBugFinder(resultsFile) opens a Polyspace results file in Polyspace Bug
Finder.

polyspaceBugFinder('-results-dir',resultsFolder) opens a Polyspace results
file from resultsFolder in Polyspace Bug Finder.

4-21

4 Functions, Properties, Classes, and Apps

polyspaceBugFinder('-help') displays options that can be supplied to the
polyspaceBugFinder command to run a Polyspace Bug Finder analysis.

polyspaceBugFinder('-sources',sourceFiles) runs a Polyspace Bug Finder
analysis on the source files specified in sourceFiles.

polyspaceBugFinder('-sources',sourceFiles,Name,Value) runs a Polyspace
Bug Finder analysis on the source files with additional options specified by one or more
Name,Value pair arguments.

Examples

Open Polyspace Projects from MATLAB

This example shows how to open a Polyspace project file with extension .psprj from
MATLAB. In this example, you open the project file Bug_Finder_Example.psprj from
the folder matlabroot\polyspace\examples\cxx\Bug_Finder_Example.

Open the project Bug_Finder_Example.psprj in the Polyspace interface.

prjFile = fullfile(matlabroot, 'polyspace', 'examples', 'cxx', ...

 'Bug_Finder_Example', 'Bug_Finder_Example.psprj');

polyspaceBugFinder(prjFile);

Open Polyspace Results from MATLAB

This example shows how to open a Polyspace results file from MATLAB. In this example,
you open the results file from the folder matlabroot\polyspace\examples\cxx
\Bug_Finder_Example\Results.

Open the results of resFolder.

resFolder = fullfile(matlabroot, 'polyspace', 'examples', ...

 'cxx', 'Bug_Finder_Example', 'Results');

polyspaceBugFinder('-results-dir',resFolder)

Run Polyspace Analysis with Options Object

This example shows how to run a Polyspace analysis from the MATLAB command-line.
For this example:

• Save a C source file, source.c, in the folder C:\Polyspace_Sources.

4-22

 polyspaceBugFinder

• Save an include file in the folder C:\Polyspace_Includes.

Create an options object and add the source file and include folder to the properties.

opts = polyspace.BugFinderOptions;

opts.Sources = {'C:\Polyspace_Sources\source.c'};

opts.EnvironmentSettings.IncludeFolders = {'C:\Polyspace_Includes'};

opts.ResultsDir = 'C:\Polyspace_Results';

Polyspace runs on the file C:\Polyspace_Sources\source.c and stores the result in
C:\Polyspace_Results.

Run the analysis and view the results.

polyspaceBugFinder(opts);

polyspaceBugFinder('-results-dir',opts.ResultsDir)

Run Polyspace Analysis from MATLAB with DOS/UNIX Options

This example shows how to run a Polyspace analysis in MATLAB. For this example:

• Save a C source file, source.c, in the folder C:\Polyspace_Sources.
• Save an include file in the folder C:\Polyspace_Includes.

To analyze C:\Polyspace_Sources\source.c, run the following command.

polyspaceBugFinder('-sources','C:\Polyspace_Sources\source.c', ...

 '-I','C:\Polyspace_Includes', ...

 '-results-dir','C:\Polyspace_Results')

To view the results, enter:

polyspaceBugFinder('-results-dir','C:\')

Run Polyspace Analysis with Coding Rules Checking

This example shows two different ways to customize an analysis in MATLAB. You can
customize as many additional options as you want by changing properties in an options
object or by using Name-Value pairs. Here you specify checking of MISRA C 2012 coding
rules.

Create variables to save the source file path and results folder path. You can use these
variables for either analysis method.

4-23

4 Functions, Properties, Classes, and Apps

sourceFileName = fullfile(matlabroot, 'polyspace','examples', 'cxx', ...

 'Bug_Finder_Example','sources','dataflow.c');

resFolder1 = fullfile('Polyspace_Results_1');

resFolder2 = fullfile('Polyspace_Results_2');

Analyze coding rules with an options object.

opts = polyspace.BugFinderOptions();

opts.Sources = {sourceFileName};

opts.ResultsDir = resFolder1;

opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';

opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

polyspaceBugFinder(opts);

polyspaceBugFinder('-results-dir',resFolder1);

Analyze coding rules with DOS/UNIX options.

polyspaceBugFinder('-sources',sourceFileName,'-results-dir',resFolder2,...

 '-misra3','all');

polyspaceBugFinder('-results-dir',resFolder2);

• “Run Polyspace in MATLAB”

Input Arguments

optsObject — Polyspace options object name
object handle

Polyspace options object name, specified as the object handle.

To create an options object, use one of the Polyspace options classes.
Example: opts

projectFile — Name of .psprj file
character vector

Name of project file with extension .psprj, specified as a character vector.

If the file is not in the current folder, projectFile must include a full or relative path.

Example: 'C:\Polyspace_Projects\myProject.psprj'

Data Types: char

4-24

 polyspaceBugFinder

resultsFile — Name of .psbf file
character vector

Name of results file with extension .psbf, specified as a character vector.

If the file is not in the current folder, resultsFile must include a full or relative path.

Example: 'myResults.psbf'

Data Types: char

resultsFolder — Name of result folder
character vector

Name of result folder, specified as a character vector. The folder must contain the results
file with extension .psbf. If the results file resides in a subfolder of the specified folder,
this command does not open the results file.

If the folder is not in the current folder, resultsFolder must include a full or relative
path.
Example: 'C:\Polyspace\Results\'

Data Types: char

sourceFiles — Comma-separated names of C or C++ files
character vector

Comma-separated C or C++ source file names, specified as a single character vector.

If the files are not in the current folder, sourceFiles must include a full or relative
path.
Example: 'myFile.c', 'C:\mySources\myFile1.c,C:\mySources\myFile2.c'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: '-target','i386','-compiler','gnu4.6' specifies that the source code
is intended for a i386 target and contains non-ANSI C syntax for GCC 4.6.

4-25

4 Functions, Properties, Classes, and Apps

For option names and values, see the Command-Line Information section in “Analysis
Options”.

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions

Introduced in R2013b

4-26

 polyspaceConfigure

polyspaceConfigure
Create Polyspace project from your build system at the MATLAB command line

Syntax
polyspaceConfigure buildCommand

polyspaceConfigure buildCommand -option value

Description
polyspaceConfigure buildCommand traces your build system and creates a
Polyspace project with information gathered from your build system.

polyspaceConfigure buildCommand -option value traces your build system and
uses the flag -option value to modify the default operation of polyspaceConfigure.

Examples
Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make
targetName buildOptions to build your source code.

Create a Polyspace project specifying a unique project name. Use the -B or -W
makefileName option with make so that the all prerequisite targets in the makefile are
remade.

polyspaceConfigure -prog myProject ...

 make -B targetName buildOptions

Open the Polyspace project in the Project Browser.

polyspaceBugFinder('myProject.psprj')

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use the command make
targetName buildOptions to build your source code. In this example, you use

4-27

4 Functions, Properties, Classes, and Apps

polyspaceConfigure to trace your build system but do not create a Polyspace project.
Instead you create an options file that you can use to run Polyspace analysis from
command-line.

Create a Polyspace options file specifying the -output-options-file command. Use
the -B or -W makefileName option with make so that all prerequisite targets in the
makefile are remade.

polyspaceConfigure -no-project -output-options-file ...

 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

polyspaceBugFinder -options-file myOptions

• “Create Project Automatically”

Input Arguments

buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

-option value — Options for changing default operation of polyspaceConfigure
single option starting with -, followed by argument | multiple space-separated option-
argument pairs

Basic Options

Option Argument Description

-allow-build-error None Option to create a Polyspace project even if an
error occurs in the build process.

If an error occurs, the build trace log shows the
following message:

polyspace-configure ERROR: build command

 command_name fail [status=status_value]

4-28

 polyspaceConfigure

Option Argument Description

command_name is the build command name that
you use and status_value is the non-zero exit
status or error level that indicates which error
occurred in your build process.

-author Author name Name of project author.

Example: -author jsmith
-debug None Option used by MathWorks technical support
-help None Option to display the full list of

polyspaceConfigure commands
-lang auto (default) |

c | cpp | cpp11
Option to specify source code language. The
languages are:

• C99: Use argument c.
• C++03: Use argument cpp.
• C++11: Use argument cpp11.

By default,polyspaceConfigure detects the
language.

The argument to this option maps to the Source
code language option in your Polyspace
project. See Source code language (-lang).

-output-options-file None Option to create a Polyspace analysis options
file. Use this file for command-line analysis
using polyspaceBugFinder.

-output-project Path Project file name and location for saving project.
The default is the file polyspace.psprj in the
current folder.

Example: -output-project ../
myProjects/project1 creates a project
project1.psprj in the folder with the relative
path ../myProjects/.

4-29

4 Functions, Properties, Classes, and Apps

Option Argument Description

-prog Project name Project name that appears in the Polyspace user
interface. The default is polyspace.

If you do not use the option -output-project,
the -prog argument also sets the project name.

Example: -prog myProject creates a
project that has the name myProject in the
user interface. If you do not use the option -
output-project, the project name is also
myProject.psrprj.

-silent (default) | -
verbose

None Option to suppress or display additional
messages from running polyspaceConfigure.

Advanced Options

Option Argument Description

-compiler-config Path and file
name

Location and name of compiler configuration file.

The file must be in a specific format. For
guidance, see the existing configuration files
in matlabroot\polyspace\configure\
compiler_configuration\. For information
on the contents of the file, see “Compiler Not
Supported for Project Creation from Build
Systems”.

Example: -compiler-configuration
myCompiler.xml

-no-build None Option to create a Polyspace project using
previously saved build trace information.

To use this option, you must have the build
trace information saved from an earlier run of
polyspaceConfigure with the -no-project
option.

4-30

 polyspaceConfigure

Option Argument Description

If you use this option, you do not need to specify
the buildCommand argument.

-no-project None Option to trace your build system without
creating a Polyspace project and save the build
trace information.

Use this option to save your build
trace information for a later run of
polyspaceConfigure with the -no-build
option.

-tmp-path Path Location of folder where temporary files are
stored.

Cache Control Options

Option Argument Description

-build-trace Path and file
name

Location and name of file where build
information is stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

-no-cache | -cache-
sources (default) | -cache-
all-files

None Option to perform one of the following:

• Not create a cache
• Cache only source and header files.
• Cache all files including binaries.

-keep-cache | -no-keep-
cache (default)

None Option to preserve or clean up cache information
after polyspaceConfigure completes
execution.

If polyspaceConfigure fails, you can provide
this cache information to technical support for
debugging purposes.

-cache-path Path Location of folder where cache information is
stored.

4-31

4 Functions, Properties, Classes, and Apps

Option Argument Description

Example: -cache-path ../cache

More About
• “Requirements for Project Creation from Build Systems”
• “Compiler Not Supported for Project Creation from Build Systems”

Introduced in R2013b

4-32

 polyspaceJobsManager

polyspaceJobsManager
Manage Polyspace jobs on a MATLAB Distributed Computing Server cluster

Syntax

polyspaceJobsManager('listjobs')

polyspaceJobsManager('cancel','-job',jobNumber)

polyspaceJobsManager('remove','-job',jobNumber)

polyspaceJobsManager('getlog','-job',jobNumber)

polyspaceJobsManager('wait','-job',jobNumber)

polyspaceJobsManager('promote','-job',jobNumber)

polyspaceJobsManager('demote','-job',jobNumber)

polyspaceJobsManager('download','-job',jobNumber)

polyspaceJobsManager('download','-job',jobNumber,'-results-folder',

resultsFolder)

polyspaceJobsManager(___ ,'-scheduler',scheduler)

Description

polyspaceJobsManager('listjobs') lists all Polyspace jobs in your cluster.

polyspaceJobsManager('cancel','-job',jobNumber) cancels the specified job.
The job appears in your queue as cancelled.

polyspaceJobsManager('remove','-job',jobNumber) removes the specified job
from your cluster.

polyspaceJobsManager('getlog','-job',jobNumber) displays the log for the
specified job.

polyspaceJobsManager('wait','-job',jobNumber) pauses until the specified job
is done.

polyspaceJobsManager('promote','-job',jobNumber) moves the specified job up
in the MATLAB job scheduler queue.

4-33

4 Functions, Properties, Classes, and Apps

polyspaceJobsManager('demote','-job',jobNumber) moves the specified job
down in the MATLAB job scheduler queue.

polyspaceJobsManager('download','-job',jobNumber) downloads the results
from the specified job. The results are downloaded to the folder you specified when
starting analysis, using the -results-dir on page 2-19 option.

polyspaceJobsManager('download','-job',jobNumber,'-results-folder',

resultsFolder) downloads the results from the specified job to resultsFolder.

polyspaceJobsManager(___ ,'-scheduler',scheduler) performs the specified
action on the job scheduler specified. If you do not specify a server with any of the
previous syntaxes, Polyspace uses the server stored in your Polyspace preferences.

Examples

Manipulate Two Jobs in the Cluster

In this example, use a MJS scheduler to run Polyspace remotely and monitor your jobs
through the queue.

Before performing this example, set up an MJS and Polyspace Metrics. This example
uses the myMJS@myCompany.com scheduler. When you perform this example, replace
this scheduler with your own cluster name.

Set up your source files.

mkdir 'C:\psdemo\src'

demo = fullfile(matlabroot,'polyspace','examples','cxx',...

'Bug_Finder_Example','sources');

copyfile(demo,'C:\psdemo\src\')

Submit two jobs to your scheduler.

polyspaceBugFinder -batch -scheduler myMJS@myCompany.com

 -sources C:\psdemo\src*.c'

 -results-dir 'C:\psdemo\res1'

polyspaceBugFinder -batch -scheduler myMJS@myCompany.com

 -sources 'C:\psdemo\src\numeric.c'

 -results-dir 'C:\psdemo\res2'

4-34

 polyspaceJobsManager

 -add-to-results-repository

polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

ID AUTHOR APPLICATION LOCAL_RESULTS_DIR WORKER STATUS DATE LANG CLUSTER_MODE

...

19 user Polyspace C:\psdemo\res1 queued Wed Mar 16 16:48:38 EST 2014 C Batch

20 user Polyspace C:\psdemo\res2 queued Wed Mar 16 16:48:38 EST 2014 C Batch

If your jobs have not started running, promote the second job to run before the first job.

polyspaceJobsManager('promote','-job','20','-scheduler',...

 'myMJS@myCompany.com')

Job 20 starts running before job 19.

Cancel job 19.

polyspaceJobsManager('cancel','-job','19','-scheduler',...

 'myMJS@myCompany.com')

polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

ID AUTHOR APPLICATION LOCAL_RESULTS_DIR WORKER STATUS DATE LANG CLUSTER_MODE

...

19 user Polyspace C:\psdemo\res1 cancelled Wed Mar 16 16:48:38 EST 2014 C Batch

20 user Polyspace C:\psdemo\res2 running Wed Mar 16 16:48:38 EST 2014 C Batch

Remove job 19.

polyspaceJobsManager('remove','-job','19','-scheduler',...

 'myMJS@myCompany.com')

polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

ID AUTHOR APPLICATION LOCAL_RESULTS_DIR WORKER STATUS DATE LANG CLUSTER_MODE

...

20 user Polyspace C:\psdemo\res2 completed Wed Mar 16 16:48:38 EST 2014 C Batch

Get the log for job 20.

polyspaceJobsManager('getlog','-job','20','-scheduler',...

 'myMJS@myCompany.com')

Download the information from job 20.

polyspaceJobsManager('download','-job','20','-results-folder', ...

4-35

4 Functions, Properties, Classes, and Apps

 'C:\psdemo\res3','-scheduler','myCluster')

Input Arguments

jobNumber — Queued job number
character vector of job number

Number of the queued job that you want to manage, specified as a character vector in
single quotes.
Example: '-job','10'

resultsFolder — Path to results folder
character vector

Path to results folder specified as a character vector in single quotes. This folder stores
the downloaded results files.
Example: '-results-folder','C:\psdemo\myresults'

scheduler — job scheduler
head node of your cluster | job scheduler name | cluster profile

Job scheduler for remote verifications specified as one of the following:

• Name of the computer that hosts the head node of your MATLAB Distributed
Computing Server cluster (NodeHost).

• Name of the MJS on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

Example: '-scheduler','myscheduler@mycompany.com'

More About
• “Clusters and Cluster Profiles”
• “Run Remote Analysis at the Command Line”

See Also
polyspaceBugFinder

4-36

 polyspaceJobsManager

Introduced in R2013b

4-37

4 Functions, Properties, Classes, and Apps

polyspace-bug-finder-nodesktop
Run a Bug Finder analysis from the DOS or UNIX command line

Syntax

polyspace-bug-finder-nodesktop -sources sourceFiles

polyspace-bug-finder-nodesktop -sources sourceFiles -option value

polyspace-bug-finder-nodesktop -sources-list-file listOfSources

polyspace-bug-finder-nodesktop -sources-list-file listOfSources -

option value

polyspace-bug-finder-nodesktop -options-file optFile

polyspace-bug-finder-nodesktop -h[elp]

Description

polyspace-bug-finder-nodesktop -sources sourceFiles runs a Bug Finder
analysis on the source file or files sourceFiles. The analysis uses the default analysis
options.

polyspace-bug-finder-nodesktop -sources sourceFiles -option value

customizes the analysis of sourceFiles with the -option value pairs specified.

polyspace-bug-finder-nodesktop -sources-list-file listOfSources runs
a Bug Finder analysis on the source files listed in the text file listOfSources. The
analysis uses the default analysis options. Using a sources list file is recommended when
you have many source files. By keeping the list of sources in a text file, the command is
shorter and updates to the list are easier.

polyspace-bug-finder-nodesktop -sources-list-file listOfSources -

option value customizes the analysis of listOfSources using the -option value
pairs specified.

polyspace-bug-finder-nodesktop -options-file optFile runs a Bug Finder
analysis with the options specified in the option file. When you have many analysis
options, an options file makes it easier to run the same analysis again.

4-38

 polyspace-bug-finder-nodesktop

polyspace-bug-finder-nodesktop -h[elp] lists a summary of possible analysis
options.

Examples

Run Analysis by Directly Specifying Options

Run a local Bug Finder analysis by specifying analysis options in the command itself.
This example uses source files from the Polyspace Bug Finder example. To run this
example, replace matlabroot with the path to your MATLAB installation, for example
C:\Program Files\MATLAB\R2016b.

Run an analysis on numerical.c and programming.c, checking for MISRA C:2012
mandatory rules, programming and numerical defects, and using GNU 4.7 compiler
settings. This example command is split by ^ characters for readability. In practice, you
can put all commands on one line.

matlabroot\polyspace\bin\polyspace-bug-finder-nodesktop^

 -sources ^

matlabroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c,^

matlabroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c ^

-compiler gnu4.7 -misra3 mandatory -checkers numerical,programming ^

-author jlittle -prog myProject -results-dir C:\Polyspace_Workspace\Results\

Open the results.

matlabroot\polyspace\bin\polyspace-bug-finder C:\Polyspace_Workspace\Results\ps_results.psbf

To rerun the analysis, you must rerun it from the command line.

Run Local Analysis with Options File

Run a local Bug Finder analysis by specifying analysis options in the command itself.
This example uses source files from the Polyspace Bug Finder example. To run this
example, replace matlabroot with the path to your MATLAB installation, for example
C:\Program Files\MATLAB\R2016b.

Save this text to a text file called myOptionsFile.txt.

Options for analyzing numerical.c and programming.c

-sources matlabroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c

-sources matlabroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c

4-39

4 Functions, Properties, Classes, and Apps

-compiler gnu4.7

-misra3 mandatory

-checkers numerical,programming

-author jlittle

-prog myProject

-results-dir C:\Polyspace_Workspace\Results\

Run the analysis with the options specified in the text file.

matlabroot\polyspace\bin\polyspace-bug-finder-nodesktop -options-file myOptionsFile.txt

Open the results.

matlabroot\polyspace\bin\polyspace-bug-finder C:\Polyspace_Workspace\Results\ps_results.psbf

To rerun the analysis, you must rerun it from the command line.

• “Run Local Analysis from DOS or UNIX Command Line”
• “Run Remote Analysis at the Command Line”

Input Arguments

sourceFiles — Comma-separated names of C or C++ files to analyze
-sources string

Comma-separated C or C++ source file names, specified as -sources followed by a
string. If the files are not in the current folder (pwd), sourceFiles must include a full or
relative path. For more information, see -sources.

Example: -sources myFile.c, -sources C:\mySources\myFile1.c,C:
\mySources\myFile2.c

listOfSources — Text file listing names of C or C++ files to analyze
-sources-list-file file

Text file which lists the name of C or C++ files, specified as -sources-list-file
followed by the file. If the files are not in the current folder (pwd), listOfSources must
include a full or relative path. For more information, see -sources-list-file.

Example: -sources-list-file filename.txt, -sources-list-file "C:
\ps_analysis\source_files.txt"

4-40

 polyspace-bug-finder-nodesktop

-option value — Analysis option and corresponding value
option syntax

Analysis options and their corresponding values, specified by the option name and if
applicable value. For syntax specifications, see the individual analysis option reference
pages.
Example: -lang C-CPP -compiler diab

optFile — Text file listing analysis options and values
-options-file file

Text file listing analysis options and values, specified as -options-file followed by the
file. For more information, see -options-file.

Example: -options-file opts.txt, -options-file "C:\ps_analysis
\options.txt"

More About
• “Analysis Options”

See Also
polyspaceBugFinder

Introduced in R2013b

4-41

4 Functions, Properties, Classes, and Apps

pslinkoptions Properties
Properties for the pslinkoptions object

Description

You can create a pslinkoptions object to customize your analysis at the command-line.
Use these properties to specify configuration options, where and how to store results,
additional files to include, and data range modes.

Configuration Options

VerificationSettings — Coding rule and configuration settings for C code
'PrjConfig' (default) | 'PrjConfigAndMisraAGC' | 'PrjConfigAndMisra' |
'PrjConfigAndMisraC2012' | 'MisraAGC' | 'Misra' | 'MisraC2012'

Coding rule and configuration settings for C code specified as:

• 'PrjConfig' – Inherit options from the project configuration.
• 'PrjConfigAndMisraAGC' – Inherit options from the project configuration and

enable MISRA AC AGC rule checking.
• 'PrjConfigAndMisra' – Inherit options from the project configuration and enable

MISRA C:2004 rule checking.
• 'PrjConfigAndMisraC2012' – Inherit options from the project configuration and

enable MISRA C:2012 guideline checking.
• 'MisraAGC' – Enable MISRA AC AGC rule checking. This option runs only

compilation and rule checking.
• 'Misra' – Enable MISRA C:2004 rule checking. This option runs only compilation

and rule checking.
• 'MisraC2012' – Enable MISRA C:2012 rule checking. This option runs only

compilation and guideline checking.

Example: opt.VerificationSettings = 'PrjConfigAndMisraC2012'

VerificationMode — Polyspace mode
'BugFinder' (default) | 'CodeProver'

4-42

 pslinkoptions Properties

Polyspace mode specified as 'BugFinder', for a Bug Finder analysis, or 'CodeProver',
for a Code Prover verification.
Example: opt.VerificationMode = ‘BugFinder’;

EnablePrjConfigFile — Allow a custom configuration file
false (default) | true

Allows a custom configuration file instead of the default configuration specified as true or
false. Use the PrjConfigFile option to specify the configuration file.

Example: opt.EnablePrjConfigFile = true;

PrjConfigFile — Custom configuration file
'' (default) | full path to a .prprj file

Custom configuration file to use instead of the default configuration specified by the full
path to a .psprj file. Use the EnablePrjConfigFile option to use this configuration
file during your analysis.
Example: opt.PrjConfigFile = 'C:\Polyspace\config.psprj';

CheckConfigBeforeAnalysis — Configuration check before analysis
'OnWarn' (default) | 'OnHalt' | 'Off'

This property sets the level of configuration checking done before the analysis starts. The
configuration check before analysis is specified as:

• 'Off' — Checks only for errors. Stops if errors are found.
• 'OnWarn' — Stops for errors. Displays a message for warnings.
• 'OnHalt' — Stops for errors and warnings.

Example: opt.CheckConfigBeforeAnalysis = 'OnHalt';

Results

ResultDir — Results folder name and location
'{'C:\Polyspace_Results\results_$ModelName$' (default) | folder name | folder
path

Results folder name and location specified as the local folder name or the folder path.
This folder is where Polyspace writes the analysis results. This folder name can be

4-43

4 Functions, Properties, Classes, and Apps

either an absolute path or a path relative to the current folder. The text $ModelName$ is
replaced with the name of the original model.
Example: opt.ResultDir = '\results_v1_$ModelName$';

AddSuffixToResultDir — Add unique number to the results folder name
false (default) | true

Add unique number to the results folder name specified as true or false. If true, a unique
number is added to the end of every new result. Using this option helps you avoid
overwriting the previous results folders.
Example: opt.AddSuffixToResultDir = true;

OpenProjectManager — Open the Polyspace environment
false (default) | true

Open the Polyspace environment to monitor the progress of the analysis, specified as true
or false. Afterward, you can review the results.
Example: opt.OpenProjectManager = true;

AddToSimulinkProject — Add results to the open Simulink project
false (default) | true

Add your results to the currently open Simulink project, if any, specified as true or false.
This option allows you to keep your Polyspace results organized with the rest of your
project files. If a Simulink project is not open, the results are not added to a Simulink
project.
Example: opt.AddToSimulinkProject = true;

Additional Files

EnableAdditionalFileList — Allow an additional file list
false (default) | true

Allow an additional file list to be analyzed, specified as true or false. Use with the
AdditionalFileList option.

Example: opt.EnableAdditionalFileList = true;

AdditionalFileList — List of additional files to be analyzed
{0x1 cell} (default) | cell array of files

4-44

 pslinkoptions Properties

List of additional files to be analyzed specified as a cell array of files. Use with the
EnableAdditionalFileList option to add these files to the analysis.

Example: opt.AdditionalFileList = {'sources\file1.c', 'sources
\file2.c'};

Data Types: cell

Data Ranges

InputRangeMode — Enable design range information
'DesignMinMax' (default) | 'FullRange'

Enable design range information specified as 'DesignMinMax', to use data ranges
defined in blocks and workspaces, or 'FullRange', to treat inputs as full-range values.

Example: opt.InputRangeMode = 'FullRange';

ParamRangeMode — Enable constant parameter values
'None' (default) | 'DesignMinMax'

Enable constant parameter values, specified as 'None', to use constant parameters
values specified in the code, or 'DesignMinMax' to use a range defined in blocks and
workspaces.
Example: opt.ParamRangeMode = 'DesignMinMax';

OutputRangeMode — Enable output assertions
'None' (default) | 'DesignMinMax'

Enable output assertions specified by 'None', to not apply assertions, or
'DesignMinMax' to apply assertions to outputs using a range defined in blocks and
workspace.
Example: opt.ParamRangeMode = 'DesignMinMax';

Embedded Coder Only

ModelRefVerifDepth — Depth of verification
'Current model only' (default) | '1' | '2' | '3' | 'All'

Depth of verification specified by the model reference level to which you want to analyze.

4-45

4 Functions, Properties, Classes, and Apps

Only for Embedded Coder

Example: opt.ModelRefVerifDepth = '3';

ModelRefByModelRefVerif — Model reference analysis mode
false (default) | true

Model reference analysis mode specified as false to verify reference models within the
model hierarchy, or true to verify referenced models individually.

Only for Embedded Coder

Example: opt.ModelRefByModelRefVerif = true;

CxxVerificationSettings — Coding rule and configuration settings for C++ code
'PrjConfig' (default) | 'PrjConfigAndMisraCxx' | 'PrjConfigAndJSF' |
'MisraCxx' | 'JSF'

Coding rule and configuration settings for C++ code specified as:

• 'PrjConfig' – Inherit options from project configuration and run complete analysis.
• 'PrjConfigAndMisraCxx' – Inherit options from project configuration, enable

MISRA C++ rule checking, and run complete analysis.
• 'PrjConfigAndJSF' – Inherit options from project configuration, enable JSF rule

checking, and run complete analysis.
• 'MisraCxx' – Enable MISRA C++ rule checking, and run compilation phase only.
• 'JSF' – Enable JSF rule checking, and run compilation phase only.

Only for Embedded Coder

Example: opt.CxxVerificationSettings = 'MisraCxx';

TargetLink Only

AutoStubLUT — Lookup Table code usage
false (default) | true

Lookup Table code usage, specified as true or false.

• true — use Lookup Table code during the analysis.
• false — stub Lookup Table code.

4-46

 pslinkoptions Properties

Only for TargetLink

Example: opts.AutoStubLUT = true;

See Also
pslinkoptions | pslinkrun

4-47

4 Functions, Properties, Classes, and Apps

polyspace.BugFinderOptions,
polyspace.ModelLinkBugFinderOptions Properties

Customize Polyspace Bug Finder analysis option object properties

Description

Customize your Polyspace Bug Finder analysis, use these
polyspace.BugFinderOptions properties. The properties are grouped using the same
categories as the Polyspace interface Configuration window. This list of properties shows
syntax specifics for the properties. For more details about the different options, refer to
the analysis options reference pages.

Advanced

Additional — Additional flags for analysis
character vector

Additional flags for analysis specified as a character vector.

For more information, see Other.

Example: opts.Advanced.Additional = '-extra-flags -option -extra-flags
value'

PostAnalysisCommand — Command or script software should execute after analysis
finishes
character vector

Command or script software should execute after analysis finishes, specified as a
character vector.

For more information, see Command/script to apply after the end of the
code verification (-post-analysis-command).

Example: opts.Advanced.PostAnalysisCommand = '"C:\Program Files\perl
\win32\bin\perl.exe" "C:\My_Scripts\send_email"'

4-48

 polyspace.BugFinderOptions, polyspace.ModelLinkBugFinderOptions Properties

BugFinderAnalysis

CheckersList — List of custom checkers to activate
name of defects options object | cell array of defect acronyms

List of custom checkers to activate specified by using the name of a
polyspace.DefectsOptions object or a cell array of defect acronyms. To use this
custom list in your analysis, set CheckersPreset to custom.

For more information, see polyspace.DefectsOptions.
Example: defects = polyspace.DefectsOptions;
opts.BugFinderAnalysis.CheckersList = defects

Example: opts.BugFinderAnalysis.CheckersList =
{'int_zero_div','float_zero_div'}

CheckersPreset — Subset of Bug Finder defects
default (default) | all | custom

Preset checker list, specified as a character vector of one the preset options: default,
all, or custom. To use custom, specify a CheckersList.

For more information, see Find defects (-checkers).

Example: opts.BugFinderAnalysis.CheckersPreset = 'all'

EnableCheckers — Activate defect checking
true (default) | false

Activate defect checking, specified as true or false. Setting this property to false disables
all defects. If you want to disable defect checking but still get results, turn on coding
rules checking or code metric checking.

This property is equivalent to the Find defects check box in the Polyspace interface.
Example: opts.BugFinderAnalysis.EnableCheckers = false

CodeProverVerification

FunctionsCalledAfterLoop — Functions that the generated main must call after the cyclic
code loop
cell array of function names

4-49

4 Functions, Properties, Classes, and Apps

Model Link only. Functions that the generated main must call after the cyclic code loop,
specified as a cell array of function names.

For more information, see Termination functions (-functions-called-after-
loop).

Example: opts.CodeProverVerification.FunctionsCalledAfterLoop =
{'func1','func2'}

FunctionsCalledBeforeLoop — Functions that the generated main must call before the
cyclic code loop
cell array of function names

Model Link only. Functions that the generated main must call before the cyclic code loop,
specified as a cell array of function names.

For more information, see Initialization functions (-functions-called-
before-loop)).

Example: opts.CodeProverVerification.FunctionsCalledBeforeLoop =
{'func1','func2'}

FunctionsCalledInLoop — Functions that the generated main must call in the cyclic code
loop
none (default) | all | cell array of function names

Model Link only. Functions that the generated main must call in the cyclic code loop,
specified as none, all, or a cell array of function names.

For more information, see Step functions (-functions-called-in-loop).

Example: opts.CodeProverVerification.FunctionsCalledInLoop = 'all'

MainGenerator — Generate a main function if it is not present in source files
true (default) | false

Generate a main function if it is not present in source files, specified as true or false.

For more information, see Verify model generated code (-main-generator).

Example: opts.CodeProverVerification.MainGenerator = false

VariablesWrittenBeforeLoop — Variables that the generated main must initialize before
the cyclic code loop
none (default) | all | cell array of variable names

4-50

 polyspace.BugFinderOptions, polyspace.ModelLinkBugFinderOptions Properties

Model Link only. Variables that the generated main must initialize before the cyclic code
loop, specified as none, all, or a cell array of variable names.

For more information, see Parameters (-variables-written-before-loop).

Example: opts.CodeProverVerification.VariablesWrittenBeforeLoop =
'all'

VariablesWrittenInLoop — Variables that the generated main must initialize in the cyclic
code loop
none (default) | all | cell array of variable names

Model Link only. Variables that the generated main must initialize in the cyclic code
loop, specified as none, all, or a cell array of variable names.

For more information, see Inputs (-variables-written-in-loop).

Example: opts.CodeProverVerification.VariablesWrittenInLoop = 'all'

CodingRulesCodeMetrics

AcAgcSubset — Subset of MISRA AC AGC rules to check
OBL-rules (default) | OBL-REC-rules | all-rules | SQO-subset1 | SQO-subset2
| coding rules object | file

Subset of MISRA AC AGC rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA AC AGC (-misra-ac-agc).

• MISRA AC AGC coding rules object created with
polyspace.CodingRulesOptions(‘misraAcAgc’)

• Full path to a file containing your MISRA AC AGC subset. You can create this file
manually or in the Polyspace interface. See “Select Specific MISRA or JSF Coding
Rules”.

To check MISRA AC AGC rules, also set EnableAcAgc to true.

Example: opts.CodingRulesCodeMetrics.AcAgcSubset = 'all-rules'

Data Types: char

AllowedPragmas — Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++
16-6-1 must not be applied
cell array of character vectors

4-51

4 Functions, Properties, Classes, and Apps

Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ 16-6-1 must not be
applied, specified as a cell array of character vectors. This property affects only MISRA
C:2004 or MISRA AC AGC rule checking.

For more information, see Allowed pragmas (-allowed-pragmas).

Example: opts.CodingRulesCodeMetrics.AllowedPragmas =
{'pragma_01','pragma_02'}

Data Types: cell

BooleanTypes — Data types the coding rule checker must treat as effectively Boolean
cell array of character vectors

Data types that the coding rule checker must treat as effectively Boolean, specified as a
cell array of character vectors.

For more information, see Effective boolean types (-boolean-types).

Example: opts.CodingRulesCodeMetrics.BooleanTypes =
{'boolean1_t','boolean2_t'}

Data Types: cell

CodeMetrics — Activate code metric calculations
false (default) | true

Activate code metric calculations, specified as true or false. If this property is turned off,
Polyspace does not calculate code metrics even if you upload your results to Polyspace
Metrics.

For more information about the code metrics, see Calculate code metrics (-code-
metrics).

Example: opts.CodingRulesCodeMetrics.CodeMetrics = true

CustomRulesSubset — Custom naming conventions to check against
custom coding rules file

Custom naming conventions to check against, specified as a custom coding rules file. You
can create the custom coding rules file manually or in the Polyspace interface.

For more information, see Check custom rules (-custom-rules).

Example: opts.CodingRulesCodeMetrics.CustomRulesSubset = 'C:
\ps_settings\coding_rules\custom_rules.txt'

4-52

 polyspace.BugFinderOptions, polyspace.ModelLinkBugFinderOptions Properties

Data Types: char

EnableAcAgc — Check MISRA AC AGC rules
false (default) | true

Check MISRA AC AGC rules, specified as true or false. To customize which rules are
checked, use AcAgcSubset.

For more information about the MISRA AC AGC checker, see Check MISRA AC AGC (-
misra-ac-agc).

Example: opts.CodingRulesCodeMetrics.EnableAcAgc = true;

EnableCustomRules — Check custom coding rules
false (default) | true

Check custom coding rules, specified as true or false. Use with CustomRulesSubset.

For more information, see Check custom rules (-custom-rules).

Example: opts.CodingRulesCodeMetrics.EnableCustomeRules = true;

EnableJsf — Check JSF C++ rules
false (default) | true

Check JSF C++ rules, specified as true or false. To customize which rules are checked,
use JsfSubset.

For more information, see Check JSF C++ rules (-jsf-coding-rules).

Example: opts.CodingRulesCodeMetrics.EnableJsf = true;

EnableMisraC — Check MISRA C:2004 rules
false (default) | true

Check MISRA C:2004 rules, specified as true or false. To customize which rules are
checked, use MisraCSubset.

For more information, see Check MISRA C:2004 (-misra2).

Example: opts.CodingRulesCodeMetrics.EnableMisraC = true;

EnableMisraC3 — Check MISRA C:2012 rules
false (default) | true

4-53

4 Functions, Properties, Classes, and Apps

Check MISRA C:2012 rules, specified as true or false. To customize which rules are
checked, use MisraC3Subset.

For more information about the MISRA C:2012 checker, see Check MISRA C:2012 (-
misra3).

Example: opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

EnableMisraCpp — Check MISRA C++:2008 rules
false (default) | true

Check MISRA C++:2008 rules, specified as true or false. To customize which rules are
checked, use MisraCppSubset.

For more information about the MISRA C++:2008 checker, see Check MISRA C++
rules (-misra-cpp).

Example: opts.CodingRulesCodeMetrics.EnableMisraCpp = true;

JsfSubset — Subset of JSF C++ rules to check
shall-rules (default) | shall-will-rules | all-rules | coding rules object | file

Subset of JSF C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check JSF C++ rules (-jsf-coding-rules).

• JSF C++ coding rules object created with
polyspace.CodingRulesOptions(‘jsf’)

• Full path to a file containing your JSF C++ subset. You can create this file manually
or from the Polyspace interface. See “Select Specific MISRA or JSF Coding Rules”.

To check JSF C++ rules, set EnableJsf to true.

Example: opts.CodingRulesCodeMetrics.JsfSubset = 'all-rules'

Data Types: char

Misra3AgcMode — Use the MISRA C:2012 categories for automatically generated code
false (default) | true

Use the MISRA C:2012 categories for automatically generated code, specified as true or
false.

4-54

 polyspace.BugFinderOptions, polyspace.ModelLinkBugFinderOptions Properties

For more information, see Use generated code requirements (-misra3-agc-
mode).

Example: opts.CodingRulesCodeMetrics.Misra3AgcMode = true;

MisraC3Subset — Subset of MISRA C:2012 rules to check
mandatory-required (default) | mandatory | all | SQO-subset1 | SQO-subset2 |
coding rules object | file

Subset of MISRA C:2012 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2012 (-misra3).

• MISRA C:2012 coding rules object created with
polyspace.CodingRulesOptions(‘misraC2012’)

• Full path to a file containing your MISRA C:2012 subset. You can create the custom
coding rules file manually or in the Polyspace interface. See “Select Specific MISRA or
JSF Coding Rules”.

To check MISRA C:2012 rules, also set EnableMisraC3 to true.

Example: opts.CodingRulesCodeMetrics.MisraC3Subset = 'all-rules'

Data Types: char

MisraCSubset — Subset of MISRA C:2004 rules to check
required-rules (default) | all-rules | SQO-subset1 | SQO-subset2 | coding
rules object | file

Subset of MISRA C:2004 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2004 (-misra2).

• MISRA C:2004 coding rules object created with
polyspace.CodingRulesOptions(‘misraC’)

• Full path to a file containing your MISRA C:2004 subset. You can create the custom
coding rules file manually or in the Polyspace interface. See “Select Specific MISRA or
JSF Coding Rules”.

To check MISRA C:2004 rules, also set EnableMisraC to true.

Example: opts.CodingRulesCodeMetrics.MisraCSubset = 'all-rules'

4-55

4 Functions, Properties, Classes, and Apps

Data Types: char

MisraCppSubset — Subset of MISRA C++ rules
required-rules (default) | all-rules | SQO-subset1 | SQO-subset2 | coding
rules object | file

Subset of MISRA C++:2008 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C++ rules (-misra-cpp).

• MISRA C++ coding rules object created with
polyspace.CodingRulesOptions(‘misraCpp’)

• Full path to a file containing your MISRA C++ subset. You can create this file
manually or from the Polyspace interface. See “Select Specific MISRA or JSF Coding
Rules”.

To check MISRA C++ rules, set EnableMisraCpp to true.

Example: opts.CodingRulesCodeMetrics.MisraCppSubset = 'all-rules'

Data Types: char

ComputingSettings

AddToResultsRepository — Upload results to Polyspace Metrics web dashboard
false (default) | true

Upload results to Polyspace Metrics web dashboard, specified as true or false. To use this
option, n your Polyspace preferences, you must specify a metrics server.

For more information, see Add to results repository (-add-to-results-
repository).

Example: opts.ComputingSettings.AddToResultsRepository = true;

Batch — Send analysis to remote server
false (default) | true

Send analysis to remote server, specified as true or false. To use this option, n your
Polyspace preferences, you must specify a metrics server.

For more information, see Code from DOS or Windows file system (-dos).

4-56

 polyspace.BugFinderOptions, polyspace.ModelLinkBugFinderOptions Properties

Example: opts.ComputingSettings.Batch = true;

EnvironmentSettings

Dos — Consider that file paths are in MS-DOS style
true (default) | false

Consider that file paths are in MS-DOS style, specified as true or false.

For more information, see Code from DOS or Windows file system (-dos).

Example: opts.EnvironmentSettings.Dos = true;

IncludeFolders — Include folders needed for compilation
cell array of include folder paths

Include folders needed for compilation, specified as a cell array of the include folder
paths.

For more information, see -I.

Example: opts.EnvironmentSettings.IncludeFolders = {'/includes','/
com1/inc'};

Example: opts.EnvironmentSettings.IncludeFolders = {'C:
\project1\common\includes'};

Data Types: cell

Includes — Files to be #include-ed by each C file
cell array of files

Files to be #include-ed by each C source file in the analysis, specified by a cell array of
files.

For more information, see Include (-include).

Example: opts.EnvironmentSettins.Includes = {'/inc/inc_file.h','/inc/
inc_math.h'}

NoExternC — Ignore linking errors inside extern blocks
false (default) | true

Ignore linking errors inside extern blocks, specified as true or false.

4-57

4 Functions, Properties, Classes, and Apps

For more information, see Ignore link errors (-no-extern-c).

Example: opts.EnvironmentSettings.NoExternC = false;

PostPreProcessingCommand — Command or script to run on source files after
preprocessing
character vector

Command or script to run on source files after preprocessing, specified as a character
vector of the command to run.

For more information, see Command/script to apply to preprocessed files (-
post-preprocessing-command).

Example: Linux — opts.EnvironmentSettings.PostPreProcessingCommand =
''pwd'/replace_keyword.pl'

Example: Windows — opts.EnvironmentSettings.PostPreProcessingCommand
= '"C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe" "C:

\My_Scripts\replace_keyword.pl"'

InputsStubbing

DataRangeSpecifications — Constrain global variables, function inputs, and return
values of stubbed functions
file path

Constrain global variables, function inputs, and return values of stubbed functions
specified by the path to an XML constraint file. For more information about the
constraint file format, see “Specify External Constraints”.

For more information about this option, see Constraint setup (-data-range-
specifications).

Example: opts.InputsStubbing.DataRangeSpecifications = 'C:\project
\constraint_file.xml'

DoNotGenerateResultsFor — Files on which you do not want analysis results
include-folders (default) | all-headers | cell array of files or folders

Files on which you do not want analysis results, specified by include-folders, all-
headers, or a cell array of file or folder names.

4-58

 polyspace.BugFinderOptions, polyspace.ModelLinkBugFinderOptions Properties

Use this option with InputsStubbing.GenerateResultsFor. For more information,
see Do not generate results for (-do-not-generate-results-for).

Example: opts.InputsStubbing.DoNotGenerateResultsFor = {'C:\project
\file1.c','C:\project\file2.c'}

GenerateResultsFor — Files on which you want analysis results
source-headers (default) | all-headers | character array

Files on which you do not want analysis results, specified by source-headers, all-
headers, or a character array of folder names.

Use this option with InputsStubbing.DoNotGenerateResultsFor. For more
information, see Generate results for sources and (-generate-results-
for).

Example: opts.InputsStubbing.GenerateResultsFor = {'C:\project
\includes_common', 'C\project\includes_prj'}

StubECoderLookupTables — Specify that the analysis must stub functions in the generated
code that use lookup tables
true (default) | false

Specify that the analysis must stub functions in the generated code that use lookup
tables. By replacing the functions with stubs, the analysis assumes more precise return
values for the functions.
Example: opts.InputsStubbing.StubECoderLookupTables = true

Macros

DefinedMacros — Macros to be replaced
cell array of macros

In preprocessed code, macros are replaced by the definition, specified in a cell array
of macros and definitions. Specify the macro as Macro=Value. If you want Polyspace
to ignore the macro, leave the Value blank. A macro with no equal sign replaces all
instances of that macro by 1.

For more information, see Preprocessor definitions (-D).

Example: opts.Macros.DefinedMacros = {'uint32=int','name3=','var'}

4-59

4 Functions, Properties, Classes, and Apps

UndefinedMacros — Macros to undefine
cell array of macros

In preprocessed code, macros are undefined, specified by a cell array of macros to
undefine.

For more information, see Disabled preprocessor definitions (-U).

Example: opts.Macros.DefinedMacros = {'name1','name2'}

Multitasking

CriticalSectionBegin — Functions that begin critical sections
cell array of critical section function names

Functions that begin critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionEnd.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).

Example: opts.Multitasking.CriticalSectionBegin =
{'function1:cs1','function2:cs2'}

CriticalSectionEnd — Functions that end critical sections
cell array of critical section function names

Functions that end critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionBegin.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).

Example: opts.Multitasking.CriticalSectionEnd =
{'function1:cs1','function2:cs2'}

CyclicTasks — Specify functions that represent cyclic tasks
cell array of function names

Specify functions that represent cyclic tasks.

4-60

 polyspace.BugFinderOptions, polyspace.ModelLinkBugFinderOptions Properties

To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Cyclic tasks (-cyclic-tasks).

Example: opts.Multitasking.CyclicTasks = {'function1','function2'}

DisableConcurrencyDetection — Disable automatic detection of POSIX and VxWorks
threading functions
false (default) | true

Disable automatic detection of POSIX and VxWorks threading functions by specifying
true.

For more information, see Disable automatic concurrency detection (-
disable-concurrency-detection).

Example: opts.Multitasking.DisableConcurrencyDetection = true

EnableMultitasking — Configure multitasking manually
false (default) | true

Configure multitasking manually by specifying true. This property activates the other
manual, multitasking properties.

For more information, see Configure multitasking manually.

Example: opts.Multitasking.EnableMultitasking = 1

EntryPoints — Functions that serve as entry-points to your multitasking application
cell array of entry-point function names

Functions that serve as entry-points to your multitasking application specified
as a cell array of entry-point function names. To activate this option, also specify
Multitasking.EnableMultitasking.

For more information, see Entry points (-entry-points).

Example: opts.Multitasking.EntryPoints = {'function1','function2'}

Interrupts — Specify functions that represent nonpreemptable interrupts
cell array of function names

Specify functions that represent nonpreemptable interrupts.

4-61

4 Functions, Properties, Classes, and Apps

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Interrupts (-interrupts).

Example: opts.Multitasking.Interrupts = {'function1','function2'}

TemporalExclusion — Entry-point functions that cannot execute concurrently
cell array of entry-point function names

Entry-point functions that cannot execute concurrently specified as a cell
array of entry-point function names. Each set of exclusive tasks is one cell
array entry with functions separated by spaces. To activate this option, specify
Multitasking.EnableMultitasking.

For more information, see Temporally exclusive tasks (-temporal-
exclusions-file).

Example: opts.Multitasking.TemporalExclusion = {'function1 function2',
'function3 function4 function5'} where function1 and function2 are temporally
exclusive, and function3, function4, and function 5 are temporally exclusive.

Reporting

EnableReportGeneration — Generate a report after the analysis
false (default) | true

After the analysis, generate a report, specified as true or false.

For more information, see Generate report.

Example: opts.Reporting.EnableReportGeneration = true

ReportOutputFormat — Output format of generated report
Word (default) | HTML | PDF

Output format of generated report, specified as one of the report formats. To activate this
option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Output format (-report-
output-format).

Example: opts.Reporting.ReportOutputFormat = 'PDF'

4-62

 polyspace.BugFinderOptions, polyspace.ModelLinkBugFinderOptions Properties

ReportTemplateBf — Template for generating analysis report
BugFinderSummary (default) | BugFinder | BugFinder_CWE | CodeMetrics |
Metrics

Template for generating analysis report, specified as one of the report formats. To
activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Report template (-report-
template).

Example: opts.Reporting.ReportOutputFormat = 'CodeMetrics'

TargetCompiler

Compiler — Compiler that builds your source code
none (default) | clang3.5 | none | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9
| iar | iso | keil | visual | visual6 | visual7.0 | visual7.1 | visual8 |
visual9.0 | visual10 | visual11.0 | visual12.0

Compiler that builds your source code.

For more information, see Compiler (-compiler).

Example: opts.TargetCompiler.Compiler = 'Visual11.0'

Cpp11Extensions — Allow C++11 language extensions
false (default) | true

Allow C++11 language extensions, specified as true or false.

For more information, see C++11 extensions (-cpp11-extension).

Example: opts.TargetCompiler.Cpp11Extensions = true

DivRoundDown — Round down quotients from division or modulus of negative numbers
false (default) | true

Round down quotients from division or modulus of negative numbers, specified as true or
false.

For more information, see Division round down (-div-round-down).

Example: opts.TargetCompiler.DivRoundDown = true

4-63

4 Functions, Properties, Classes, and Apps

EnumTypeDefinition — Base type representation of enum
defined-by-standard (default) | auto-signed-first | auto-unsigned-first

Base type representation of enum, specified by an allowed base-type set. For more
information about the different values, see Enum type definition (-enum-type-
definition).

Example: opts.EnumTypeDefinition = 'auto-unsigned-first'

ForLoopIndexScope — Scope of index variable declared in for loops
defined-by-dialect (default) | out | in

Scope of index variable declared in for loops, specified as one of the allowed values.

For more information about the different values, see Management of for loop index
scope (-for-loop-index-scope).

Example: opts.TargetCompiler.ForLoopIndexScope = 'in'

IgnorePragmaPack — Ignore #pragma pack directives
false (default) | true

Ignore #pragma pack directives, specified as true or false.

For more information, see Ignore pragma pack directives (-ignore-pragma-
pack).

Example: opts.TargetCompiler.IgnorePragmaPack = true

Language — Language of analysis
C-CPP (default) | C | CPP

This property is read only.

Language of the analysis, specified during the object construction. This value changes
which properties appear.

For more information, see Source code language (-lang).

LogicalSignedRightShift — Treatment of signed bit on signed variables
Arithmetical (default) | Logical

Treatment of signed bit on signed variables, specified as Arithmetical or Logical. For
more information, see Signed right shift (-logical-signed-right-shift).

4-64

 polyspace.BugFinderOptions, polyspace.ModelLinkBugFinderOptions Properties

Example: opts.TargetCompiler.LogicalSignedRightShift = 'Logical'

NoLanguageExtensions — Restrict analysis to C language specified in ANSI C standard
false (default) | true

Restrict analysis to the C language that is specified in the ANSI C standard, specified
as true or false. For more information, see Respect C90 standard (-no-language-
extensions).

Example: opts.TargetCompiler.NoLanguageExtentions = true

NoUliterals — Do not use predefined typedefs for char16_t or char32_t
false (default) | true

Do not use predefined typedefs for char16_t or char32_t, specified as true or false. For
more information, see Block char16/32_t types (-no-uliterals).

Example: opts.TargetCompiler.NoUliterals = true

PackAlignmentValues — Default structure packing alignment
8 (default) | 1 | 2 | 4 | 16

Default structure packing alignment, specified as 1,2, 4, 8, or 16. This property is
available only for Visual C++ code.

For more information, see Pack alignment value (-pack-alignment-value).

Example: opts.TargetCompiler.PackAlignmentValues = 4

SfrTypes — sfr types
cell array of sfr keywords

sfr types, specified as a cell array of sfr keywords using the syntax
sfr_name=size_in_bits. For more information, see Sfr type support (-sfr-
types).

Example: opts.TargetCompiler.SfrTypes = {'sfr32=32'}

SizeTIsUnsignedLong — Set underlying type of size_t to unsigned long
false (default) | true

Set underlying type of size_t to unsigned long, specified as true or false. For more
information, see Set size_t to unsigned long (-size-t-is-unsigned-long).

Example: opts.TargetCompiler.SizeTIsUnsignedLong = true

4-65

4 Functions, Properties, Classes, and Apps

Target — Target processor
i386 (default) | sparc | m68k | powerpc | c-167 | tms320c3x | sharc21x61 |
necv580 | hc08 | hc12 | mpc5xx | c18 | x86_64 | generic target object

Set size of data types and endienness of processor, specified as one of the predefined
target processors or a generic target object.

For more information about the predefined processors, see Target processor type
(-target).

For more information about creating a generic target, see
polyspace.GenericTargetOptions.
Example: opts.TargetCompiler.Target = 'hc12'

WcharTIs — Interpretation of wchar_t type
defined-by-dialect (default) | typedef | keyword

Interpretation of wchar_t type, specified as defined-by-dialect, typedef, or
keyword. For more information, see Management of wchar_t (-wchar-t-is).

Example: opts.TargetCompiler.WcharTIs = 'keyword'

WcharTIsUnsignedLong — Set underlying type of wchar_t to unsigned long
false (default) | true

Set underlying type of wchar_t to unsigned long, specified as true or false.

For more information, see Set wchar_t to unsigned long (-wchar-t-is-
unsigned-long).

Example: opts.TargetCompiler.WcharTIsUnsignedLong = true

Properties

Prog — Project name
PolyspaceProject (default) | character vector

Project name, specified as a character vector.

For more information, see -prog.

Example: opts.Prog = 'myProject'

4-66

 polyspace.BugFinderOptions, polyspace.ModelLinkBugFinderOptions Properties

ResultsDir — Location to store results
folder path

Location to store results, specified as a folder path. By default, the results are stored in
the current folder.

For more information, see -results-dir.

Example: opts.ResultsDir = 'C:\project\myproject\results\'

Sources — Source files
cell array of files

Source files to analyze, specified as a cell array of files.

For more information, see -sources.

Example: opts.Sources = {'file1.c', file2.c', 'file3.c'}

Example: opts.Sources = {'project/src1/file1.c', 'project/src2/
file2.c', 'project/src3/file3.c'}

Version — Project version number
1.0 (default) | character array of a number

Version number of project, specified as a character array of a number. This option is
useful if you upload your results to Polyspace Metrics. If you increment version numbers
each time that you reanalyze your object, you can compare the results from two versions
in Polyspace Metrics.

For more information, see -v[ersion].

Example: opts.Version = '2.3'

More About
• “Analysis Options”

Introduced in R2016b

4-67

4 Functions, Properties, Classes, and Apps

Polyspace Bug Finder
Identify software defects via static analysis

Description
The Polyspace Bug Finder app uses static analysis to quickly find run-time errors,
data flow problems, and other defects in C and C++ code.

You can also add check compliance with MISRA C, MISRA C++, JSF++, and custom
coding rules.

Open the Polyspace Bug Finder App

• MATLAB Toolstrip: On the Apps tab, under Code Verification, click the app icon.
• MATLAB command prompt: Enter polyspaceBugFinder.

Examples
• “Find Defects from the Polyspace Environment”
• “Run Local Analysis from DOS or UNIX Command Line”

Programmatic Use

polyspaceBugFinder

More About
• “Polyspace Bug Finder”

See Also

Apps
Polyspace Code Prover

4-68

 Polyspace Bug Finder

Functions
polyspaceBugFinder | polyspaceConfigure

Introduced in R2013b

4-69

4 Functions, Properties, Classes, and Apps

polyspace.BugFinderOptions class
Package: polyspace

Create Polyspace Bug Finder object for handwritten code

Description
Customize a Polyspace Bug Finder analysis from MATLAB by creating a Bug Finder
options object. To specify source files and customize analysis options, change the object
properties.

If you are analyzing model-generated code, use polyspace.ModelLinkBugFinderOptions
instead.

Construction
opts = polyspace.BugFinderOptions creates a Bug Finder options object with
available options.

opts = polyspace.BugFinderOptions(lang) creates a Bug Finder options object
with options that are applicable for the language lang.

Input Arguments

lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument
determines which properties the object has.
Example: opts = polyspace.BugFinderOptions('C')

Data Types: char

Properties
The object properties are the analysis options for Polyspace Bug Finder projects. The
properties are organized in the same categories as the Polyspace interface. The property

4-70

 polyspace.BugFinderOptions class

names are a shortened version of the DOS/UNIX command-line name. For syntax details,
see polyspace.BugFinderOptions Properties.

Methods

copyTo Copy common settings between Polyspace
options objects

generateProject Generate psprj project from options object

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

To copy properties between Polyspace objects, use . You can copy corresponding
properties between BugFinderOptions objects and CodeProverOptions objects.

Examples

Customize and Run Analysis

Create a Bug Finder analysis options object and customize the properties. Then, run an
analysis.

Create object and customize properties.

sources = fullfile(matlabroot, 'polyspace','examples','cxx','Bug_Finder_Example',...

 'sources','numerical.c');

optsBF = polyspace.BugFinderOptions();

optsBF.Prog = 'MyProject';

optsBF.Sources = {sources};

optsBF.TargetCompiler.Compiler = 'gnu4.7';

Run the analysis and open the results in the Polyspace interface.

results = polyspaceBugFinder(optsBF);

4-71

4 Functions, Properties, Classes, and Apps

polyspaceBugFinder(results);

Run Polyspace by Generating a Project File

Create a Bug Finder analysis options object and customize the properties. Then, run an
analysis.

Create object and customize properties.

sources = fullfile(matlabroot, 'polyspace','examples','cxx','Bug_Finder_Example',...

 'sources','numerical.c');

optsBF = polyspace.BugFinderOptions();

optsBF.Prog = 'MyProject';

optsBF.Sources = {sources};

optsBF.TargetCompiler.Compiler = 'gnu4.7';

Generate a Polyspace project, name it using the Prog property, and open the project in
the Polyspace interface.

psprj = generateProject(optsBF, optsBF.Prog);

polyspaceBugFinder(psprj);

Run the analysis and open the results in the Polyspace interface.

results = polyspaceBugFinder(psprj, '-nodesktop');

polyspaceBugFinder(results);

• “Run Polyspace in MATLAB”

Alternatives

If you are analyzing code generated from a model, use
polyspace.ModelLinkBugFinderOptions instead.

See Also
polyspace.ModelLinkBugFinderOptions | polyspace.BugFinderOptions Properties |
polyspaceBugFinder

Introduced in R2016b

4-72

 polyspace.ModelLinkBugFinderOptions class

polyspace.ModelLinkBugFinderOptions class

Package: polyspace

Create Polyspace Bug Finder object for generated code

Description

Customize a Polyspace Bug Finder analysis from MATLAB by creating a Bug Finder
options object. To specify source files and customize analysis options, change the object
properties.

This class is intended for model-generated code. If you are analyzing handwritten code,
use polyspace.BugFinderOptions instead.

Construction

opts = polyspace.BugFinderOptions creates a Bug Finder options object for
generated code with available options for C/C++ generated code.

Properties

The object properties are the analysis options for Polyspace Bug Finder model link
projects. The properties are organized in the same categories as the Polyspace interface.
The property names are a shortened version of the DOS command-line name. For syntax
details, see polyspace.ModelLinkBugFinderOptions Properties.

Methods

copyTo Copy common settings between Polyspace
options objects

generateProject Generate psprj project from options object

4-73

4 Functions, Properties, Classes, and Apps

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

To copy properties between Polyspace objects, use . You can copy corresponding
properties between BugFinderOptions objects and CodeProverOptions objects.

Examples

Script Analysis of Model Generated Code

This example shows how to customize and run an analysis on model generated code with
MATLAB functions and objects.

Create a custom configuration that checks MISRA C 2012 rules and generates a PDF
report.

opts = polyspace.ModelLinkBugFinderOptions();

opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';

opts.Reporting.ReportOutputFormat = 'PDF';

opts.Reporting.EnableReportGeneration = true;

Generate code from psdemo_model_link_sl.

model = 'psdemo_model_link_sl';

load_system(model);

slbuild(model);

Add the configuration to pslinkoptions object.

prjfile = opts.generateProject('model_link_opts');

mlopts = pslinkoptions(model);

mlopts.EnablePrjConfigFile = true;

mlopts.PrjConfigFile = prjfile;

mlopts.VerificationMode = 'BugFinder';

Run analysis and open results.

results = pslinkrun(model);

4-74

 polyspace.ModelLinkBugFinderOptions class

polyspaceBugFinder(results);

• “Run Polyspace in MATLAB”

Alternatives

If you are analyzing handwritten code, use polyspace.BugFinderOptions instead.

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions Properties |
polyspaceBugFinder | pslinkrun

4-75

4 Functions, Properties, Classes, and Apps

polyspace.DefectsOptions class
Package: polyspace

Create custom list of defects to check

Description

Create a custom list of defects to check. This object is useful if you want to
check only a custom subset of the Bug Finder defects. To use your custom list
of defects in an analysis, you must add it to a polyspace.BugFinderOptions or
polyspace.ModelLinkBugFinderOptions object. In your Bug Finder options object, set the
following properties:

• Add your defect options object to the BugFinderAnalysis.CheckersList property.
• Change the BugFinderAnalysis.CheckersPreset property to 'custom'.

Construction

defectList = polyspace.DefectsOptions creates the defect options object
defectList. You can customize the list of active defects by changing the properties.

Properties

An object is created with supported defects as properties. The defects are listed by their
command-line name, found on the individual defect reference pages.

By default, all defects are off. To turn on a defect, set the defect to true. For example:

defectList.FLOAT_ZERO_DIV = true

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

4-76

 polyspace.DefectsOptions class

Examples

Customize List of Defects to Check

Use a polyspace.DefectsOptions object to customize the list of defects checked during a
Polyspace Bug Finder analysis.

Create options objects.

defects = polyspace.DefectsOptions;

opts = polyspace.BugFinderOptions;

Set Bug Finder object properties to analyze with the customized defect list.

opts.BugFinderAnalysis.CheckersList = defects;

opts.BugFinderAnalysis.CheckersPreset = 'custom';

Activate the numerical defects.

defects.FLOAT_ZERO_DIV = true;

defects.INT_ZERO_DIV = true;

defects.FLOAT_ABSORPTION = true;

defects.BITWISE_NEG = true;

defects.FLOAT_CONV_OVFL = true;

defects.FLOAT_OVFL = true;

defects.INT_CONV_OVFL = true;

defects.INT_OVFL = true;

defects.FLOAT_STD_LIB = true;

defects.INT_STD_LIB = true;

defects.SHIFT_NEG = true;

defects.SHIFT_OVFL = true;

defects.SIGN_CHANGE = true;

defects.UINT_CONV_OVFL = true;

defects.UINT_OVFL = true;

defects.BAD_PLAIN_CHAR_USE = true;

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions |
polyspace.CodingRulesOptions

More About
• “Defects”

4-77

4 Functions, Properties, Classes, and Apps

Introduced in R2016b

4-78

 polyspace.GenericTargetOptions class

polyspace.GenericTargetOptions class
Package: polyspace

Create a generic target configuration

Description

If your target processor does not match one of the preset targets on page 1-10, use this
object to create a custom generic target. To use your custom target in an analysis, you
must add it to a polyspace.BugFinderOptions or polyspace.ModelLinkBugFinderOptions
object. In your options object, add your generic target options object to the
TargetCompiler.Target property.

Construction

genericTarget = polyspace.GenericTargetOptions creates a generic target that
you can customize. To specify the size and alignment of types, change the properties of
the genericTarget object.

Properties

For more details about any of these properties, see Generic target options.

Alignment — Largest alignment of struct or array objects
32 (default) | 16 | 8

Largest alignment of struct or array objects, specified as 32, 16, or 8. Comparable with
the DOS/UNIX command-line option -align.

Example: target.Alignment = 8

CharNumBits — Define the number of bits for a char
8 (default) | 16

Define the number of bits for a char, specified as 8 or 16. Comparable with the DOS/
UNIX command-line option -char-is-16bits.

4-79

4 Functions, Properties, Classes, and Apps

Example: target.CharNumBits = 16

DoubleNumBits — Define the number of bits for a double
32 (default) | 64

Define the number of bits for a double, specified as 32 or 64. Comparable with the DOS/
UNIX command-line option -double-is-64bits.

Example: target.DoubleNumBits = 64

Endianess — Endianess of target architecture
little (default) | big

Endianess of target architecture, specified as little or big. Comparable with the DOS/
UNIX command-line options -little-endian or -big-endian.

Example: target.Endianess = 'big'

IntNumBits — Define the number of bits for an int
16 (default) | 32

Define the number of bits for an int, specified as 16 or 32. Comparable with the DOS/
UNIX command-line option -int-is-32bits.

Example: target.IntNumBits = 32

LongLongNumBits — Define the number of bits for a long long
32 (default) | 64

Define the number of bits for a long long, specified as 32 or 64. Comparable with the
DOS/UNIX command-line option -long-long-is-64bits.

Example: target.LongNumBits = 64

LongNumBits — Define the number of bits for a long
32 (default)

Define the number of bits for a long, specified as 32. Comparable with the DOS/UNIX
command-line option -long-is-32bits.

Example: target.LongNumBits = 32

PointerNumBits — Define the number of bits for a pointer
16 (default) | 24 | 32

4-80

 polyspace.GenericTargetOptions class

Define the number of bits for a pointer, specified as 16, 24, or 32. Comparable with the
DOS/UNIX command-line options -pointer-is-24bits and -pointer-is-32bits.

Example: target.PointerNumBits = 32

ShortNumBits — Define the number of bits for a short
16 (default) | 8

Define the number of bits for an int, specified as 16 or 8. Comparable with the DOS/
UNIX command-line option -short-is-8bits.

Example: target.ShortNumBits = 8

SignOfChar — Default sign of plain char
signed (default) | unsigned

Default sign of plain char, specified as signed or unsigned. Comparable with the DOS/
UNIX command-line option -default-sign-of-char.

Example: target.SignOfChar = 'unsigned'

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Customize Generic Target Settings

Use a polyspace.GenericTargetOptions object to customize a generic target for your
analysis.

Create options objects.

target = polyspace.GenericTargetOptions;

opts = polyspace.BugFinderOptions;

Add the custom target to the Bug Finder options object.

opts.TargetCompiler.Target = target;

4-81

4 Functions, Properties, Classes, and Apps

Customize the generic target.

target.Endianess = 'big';

target.LongLongNumBits = 64;

target.ShortNumBits = 8

target =

 Alignment: 32

 CharNumBits: 8

 DoubleNumBits: 32

 Endianess: 'big'

 IntNumBits: 16

 LongLongNumBits: 64

 LongNumBits: 32

 PointerNumBits: 16

 ShortNumBits: 8

 SignOfChar: 'signed'

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions | Target
processor type (-target)

Introduced in R2016b

4-82

 polyspace.CodingRulesOptions class

polyspace.CodingRulesOptions class

Package: polyspace

Create custom list of coding rules to check

Description

Create a custom list of coding rules to check for one of the supported standard
coding rule sets. To use your custom target in an analysis, you must add it to a
polyspace.BugFinderOptions or polyspace.ModelLinkBugFinderOptions object. In your
options object:

• Add your coding rules options object to one of the
CodingRulesCodeMetrics.RULESETSubset properties.

• Activate your coding rule set with one of the
CodingRulesCodeMetrics.EnableRULESET properties.

Construction

ruleList = polyspace.CodingRulesOptions(RuleSet) creates the coding rules
object ruleList for the RuleSet coding rule set. Set the active rules in the coding rules
object.

Input Arguments

RuleSet — Standard coding rule set
misraC (default) | misraC2012 | misraAcAgc | misraCpp | jsf

Standard coding rule set specified as one of the coding rule acronyms.
Example: 'misraCpp'

Data Types: char

4-83

4 Functions, Properties, Classes, and Apps

Properties

For each coding rule set, an object is created with all supported rules for that rule set. By
default, all rules are on. To turn off a rule, set the rule to false. For example:

ruleList.rule_20_1 = false

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Customize List of Coding Rules to Check

Customize the coding rules that are checked during your analysis by using a coding rules
options object.

Create options objects.

misraRules = polyspace.CodingRulesOptions('misraC2012');

opts = polyspace.BugFinderOptions;

Add the customized list of coding rules to the Bug Finder options object and activate
them.

opts.CodingRulesCodeMetrics.MisraC3Subset = misraRules;

opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

Customize the coding rule list by turning off rules 2.1-2.7.

misraRules.rule_2_1 = false;

misraRules.rule_2_2 = false;

misraRules.rule_2_3 = false;

misraRules.rule_2_4 = false;

misraRules.rule_2_5 = false;

misraRules.rule_2_6 = false;

misraRules.rule_2_7 = false;

• “Select Specific MISRA or JSF Coding Rules”

4-84

 polyspace.CodingRulesOptions class

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions

Introduced in R2016b

4-85

4 Functions, Properties, Classes, and Apps

copyTo
Copy common settings between Polyspace options objects

Syntax

copyTo(optObjFrom, optsObjTo)

Description

copyTo(optObjFrom, optsObjTo) copies the common options from optsObjFrom
to optObjTo. The options objects do not need to be the same type of options object. This
method copies only properties that are common between the two objects.

Input Arguments

optsObjFrom — Options object you want to copy properties from
options object name

Option object that you want to copy properties from, specified as the options object name.
Example: copyTo(optsCP,optsBF)

optsObjTo — Options object you want to copy properties to
options object name

Option object that you want to copy properties to, specified as the options object name.
Example: copyTo(optsBF,optsCP)

Examples

Copy Bug Finder Settings to Code Prover Options Object

This example shows how to set the properties of a Code Prover options object by using a
Bug Finder object.

4-86

 copyTo

Create a Bug Finder object and set properties.

optsBF = polyspace.BugFinderOptions();

optsBF.Prog = 'DataRaceProject';

optsBF.Sources = {'datarace.c'};

optsBF.TargetCompiler.Compiler = 'diab'

optsBF =

 Advanced: [1x1 Options]

 BugFinderAnalysis: [1x1 Options]

 CodingRulesCodeMetrics: [1x1 Options]

 ComputingSettings: [1x1 Options]

 EnvironmentSettings: [1x1 Options]

 InputsStubbing: [1x1 Options]

 Macros: [1x1 Options]

 Multitasking: [1x1 Options]

 Reporting: [1x1 Options]

 TargetCompiler: [1x1 Options]

 Prog: 'DataRaceProject'

 ResultsDir: ''

 Sources: {'datarace.c'}

 Version: '1.0'

Create a Code Prover object and use copyTo to copy over options from optsBF.

optsCP = polyspace.CodeProverOptions();

copyTo(optsBF, optsCP)

ans =

 Advanced: [1x1 Options]

 ChecksAssumption: [1x1 Options]

 CodeProverVerification: [1x1 Options]

 CodingRulesCodeMetrics: [1x1 Options]

 ComputingSettings: [1x1 Options]

 EnvironmentSettings: [1x1 Options]

 InputsStubbing: [1x1 Options]

 Macros: [1x1 Options]

 Multitasking: [1x1 Options]

 Precision: [1x1 Options]

 Reporting: [1x1 Options]

4-87

4 Functions, Properties, Classes, and Apps

 Scaling: [1x1 Options]

 TargetCompiler: [1x1 Options]

 VerificationAssumption: [1x1 Options]

 Prog: 'DataRaceProject'

 ResultsDir: ''

 Sources: {'datarace.c'}

 Version: '1.0'

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions |
polyspace.Options.generateProject

Introduced in R2016b

4-88

 generateProject

generateProject
Generate psprj project from options object

Syntax

generateProject(optionsObject,projectName)

Description

generateProject(optionsObject,projectName) creates a .psprj project called
projectName from the options specified in the Bug Finder or Code Prover options object
optionsObject.

Tips

If you want to include an options object in a pslinkoptions object:

1 Use this method to convert your object to a project.
2 Add the project to the pslinkoptions property PrjConfig.
3 Turn on the property EnablePrjConfig.

Input Arguments

optionsObject — Options object to convert into a psprj file
options object handle

Option object to convert into a psprj file specified by the object name.

Example: genenerateProject(opts,'myProject')

projectName — Project file name
character vector

Project file name specified as a character vector. This argument is used as the name of
the psprj file.

4-89

4 Functions, Properties, Classes, and Apps

Example: 'myProject'

Examples

Generate Project from a Bug Finder Options Object

This example shows how to create and use a Polyspace project that was generated from
an options object.

Create a Bug Finder object and set properties.

sources = fullfile(matlabroot, 'polyspace','examples','cxx','Bug_Finder_Example',...

 'sources','numerical.c');

optsBF = polyspace.BugFinderOptions();

optsBF.Prog = 'MyProject';

optsBF.Sources = {sources};

optsBF.TargetCompiler.Compiler = 'gnu4.7';

Generate a Polyspace project. Name the project using the Prog property.

psprj = generateProject(optsBF, optsBF.Prog);

Run an analysis using one of these commands. Both commands produce identical
analysis results. The only difference is that the psprj project can be rerun in the
Polyspace interface.

polyspaceBugFinder(psprj, '-nodesktop');

polyspaceBugFinder(optsBF);

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions |
polyspace.Options.copyTo

Introduced in R2016b

4-90

5

MISRA C 2012

MISRA C:2012 Directive 2.1
MISRA C:2012 Directive 4.1
MISRA C:2012 Directive 4.3
MISRA C:2012 Directive 4.5
MISRA C:2012 Directive 4.6
MISRA C:2012 Directive 4.9
MISRA C:2012 Directive 4.10
MISRA C:2012 Directive 4.11
MISRA C:2012 Directive 4.13
MISRA C:2012 Rule 1.1
MISRA C:2012 Rule 1.2
MISRA C:2012 Rule 1.3
MISRA C:2012 Rule 2.1
MISRA C:2012 Rule 2.2
MISRA C:2012 Rule 2.3
MISRA C:2012 Rule 2.4
MISRA C:2012 Rule 2.5
MISRA C:2012 Rule 2.6
MISRA C:2012 Rule 2.7
MISRA C:2012 Rule 3.1
MISRA C:2012 Rule 3.2
MISRA C:2012 Rule 4.1
MISRA C:2012 Rule 4.2
MISRA C:2012 Rule 5.1
MISRA C:2012 Rule 5.2
MISRA C:2012 Rule 5.3
MISRA C:2012 Rule 5.4
MISRA C:2012 Rule 5.5
MISRA C:2012 Rule 5.6
MISRA C:2012 Rule 5.7
MISRA C:2012 Rule 5.8
MISRA C:2012 Rule 5.9

5 MISRA C 2012

MISRA C:2012 Rule 6.1
MISRA C:2012 Rule 6.2
MISRA C:2012 Rule 7.1
MISRA C:2012 Rule 7.2
MISRA C:2012 Rule 7.3
MISRA C:2012 Rule 7.4
MISRA C:2012 Rule 8.1
MISRA C:2012 Rule 8.2
MISRA C:2012 Rule 8.3
MISRA C:2012 Rule 8.4
MISRA C:2012 Rule 8.5
MISRA C:2012 Rule 8.6
MISRA C:2012 Rule 8.7
MISRA C:2012 Rule 8.8
MISRA C:2012 Rule 8.9
MISRA C:2012 Rule 8.10
MISRA C:2012 Rule 8.11
MISRA C:2012 Rule 8.12
MISRA C:2012 Rule 8.13
MISRA C:2012 Rule 8.14
MISRA C:2012 Rule 9.1
MISRA C:2012 Rule 9.2
MISRA C:2012 Rule 9.3
MISRA C:2012 Rule 9.4
MISRA C:2012 Rule 9.5
MISRA C:2012 Rule 10.1
MISRA C:2012 Rule 10.2
MISRA C:2012 Rule 10.3
MISRA C:2012 Rule 10.4
MISRA C:2012 Rule 10.5
MISRA C:2012 Rule 10.6
MISRA C:2012 Rule 10.7
MISRA C:2012 Rule 10.8
MISRA C:2012 Rule 11.1
MISRA C:2012 Rule 11.2
MISRA C:2012 Rule 11.3
MISRA C:2012 Rule 11.4
MISRA C:2012 Rule 11.5
MISRA C:2012 Rule 11.6
MISRA C:2012 Rule 11.7

5-2

 MISRA C 2012

MISRA C:2012 Rule 11.8
MISRA C:2012 Rule 11.9
MISRA C:2012 Rule 12.1
MISRA C:2012 Rule 12.2
MISRA C:2012 Rule 12.3
MISRA C:2012 Rule 12.4
MISRA C:2012 Rule 13.1
MISRA C:2012 Rule 13.2
MISRA C:2012 Rule 13.3
MISRA C:2012 Rule 13.4
MISRA C:2012 Rule 13.5
MISRA C:2012 Rule 13.6
MISRA C:2012 Rule 14.1
MISRA C:2012 Rule 14.2
MISRA C:2012 Rule 14.3
MISRA C:2012 Rule 14.4
MISRA C:2012 Rule 15.1
MISRA C:2012 Rule 15.2
MISRA C:2012 Rule 15.3
MISRA C:2012 Rule 15.4
MISRA C:2012 Rule 15.5
MISRA C:2012 Rule 15.6
MISRA C:2012 Rule 15.7
MISRA C:2012 Rule 16.1
MISRA C:2012 Rule 16.2
MISRA C:2012 Rule 16.3
MISRA C:2012 Rule 16.4
MISRA C:2012 Rule 16.5
MISRA C:2012 Rule 16.6
MISRA C:2012 Rule 16.7
MISRA C:2012 Rule 17.1
MISRA C:2012 Rule 17.2
MISRA C:2012 Rule 17.3
MISRA C:2012 Rule 17.4
MISRA C:2012 Rule 17.5
MISRA C:2012 Rule 17.6
MISRA C:2012 Rule 17.7
MISRA C:2012 Rule 17.8
MISRA C:2012 Rule 18.1
MISRA C:2012 Rule 18.2

5-3

5 MISRA C 2012

MISRA C:2012 Rule 18.3
MISRA C:2012 Rule 18.4
MISRA C:2012 Rule 18.5
MISRA C:2012 Rule 18.6
MISRA C:2012 Rule 18.7
MISRA C:2012 Rule 18.8
MISRA C:2012 Rule 19.1
MISRA C:2012 Rule 19.2
MISRA C:2012 Rule 20.1
MISRA C:2012 Rule 20.2
MISRA C:2012 Rule 20.3
MISRA C:2012 Rule 20.4
MISRA C:2012 Rule 20.5
MISRA C:2012 Rule 20.6
MISRA C:2012 Rule 20.7
MISRA C:2012 Rule 20.8
MISRA C:2012 Rule 20.9
MISRA C:2012 Rule 20.10
MISRA C:2012 Rule 20.11
MISRA C:2012 Rule 20.12
MISRA C:2012 Rule 20.13
MISRA C:2012 Rule 20.14
MISRA C:2012 Rule 21.1
MISRA C:2012 Rule 21.2
MISRA C:2012 Rule 21.3
MISRA C:2012 Rule 21.4
MISRA C:2012 Rule 21.5
MISRA C:2012 Rule 21.6
MISRA C:2012 Rule 21.7
MISRA C:2012 Rule 21.8
MISRA C:2012 Rule 21.9
MISRA C:2012 Rule 21.10
MISRA C:2012 Rule 21.11
MISRA C:2012 Rule 21.12
MISRA C:2012 Rule 22.1
MISRA C:2012 Rule 22.2
MISRA C:2012 Rule 22.3
MISRA C:2012 Rule 22.4
MISRA C:2012 Rule 22.5
MISRA C:2012 Rule 22.6

5-4

 MISRA C:2012 Directive 2.1

MISRA C:2012 Directive 2.1
All source files shall compile without any compilation errors

Description

Rule Definition

All source files shall compile without any compilation errors.

Rationale

A conforming compiler is permitted to produce an object module despite the presence of
compilation errors. However, execution of the resulting program can produce unexpected
behavior.

Polyspace Specification

The software raises a violation of this directive if it finds a compilation error. Because
Code Prover is more strict about compilation errors compared to Bug Finder, the coding
rules checking in the two products can produce different results for this directive.

Message in Report

All source files shall compile without any compilation errors.

Check Information
Group: Compilation and build
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.1

5-5

5 MISRA C 2012

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5-6

 MISRA C:2012 Directive 4.1

MISRA C:2012 Directive 4.1
Run-time failures shall be minimized

Description

Rule Definition

Run-time failures shall be minimized.

Rationale

Some areas to concentrate on are:

• Arithmetic errors
• Pointer arithmetic
• Array bound errors
• Function parameters
• Pointer dereferencing
• Dynamic memory

Polyspace Specification

This directive is checked through the Polyspace analysis. For more information, see:

• “Defects” in Polyspace Bug Finder documentation.
• “Run-Time Checks” in Polyspace Code Prover documentation.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

Run-time failures shall be minimized.

5-7

5 MISRA C 2012

Check Information
Group: Code Design
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.11 | MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 18.1 |
MISRA C:2012 Rule 18.2 | MISRA C:2012 Rule 18.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-8

 MISRA C:2012 Directive 4.3

MISRA C:2012 Directive 4.3

Assembly language shall be encapsulated and isolated

Description

Rule Definition

Assembly language shall be encapsulated and isolated.

Rationale

Encapsulating assembly language is beneficial because:

• It improves readability.
• The name, and documentation, of the encapsulating macro or function makes the

intent of the assembly language clear.
• All uses of assembly language for a given purpose can share encapsulation, which

improves maintainability.
• You can easily substitute the assembly language for a different target or for purposes

of static analysis.

Polyspace Specification

Polyspace does not raise a warning on assembly language code encapsulated in the
following:

• asm functions or asm pragmas
• Macros

Message in Report

Assembly language shall be encapsulated and isolated

5-9

5 MISRA C 2012

Examples

Assembly Language Code in C Function

enum boolVal {TRUE, FALSE};

enum boolVal isTaskActive;

void taskHandler(void);

void taskHandler(void) {

 isTaskActive = FALSE;

 // Software interrupt for task switching

 asm volatile

 (

 "SWI &02" /* Service #1: calculate run-time */

);

 return;

}

In this example, the rule violation occurs because the assembly language code is
embedded directly in a C function taskHandler that contains other C language
statements.

Correction: Encapsulate Assembly Code in Macro

One possible correction is to encapsulate the assembly language code in a macro and
invoke the macro in the function taskHandler.

#define RUN_TIME_CALC \

asm volatile \

 (\

 "SWI &02" /* Service #1: calculate run-Time */ \

)\

enum boolVal {TRUE, FALSE};

enum boolVal isTaskActive;

void taskHandler(void);

void taskHandler(void) {

 isTaskActive = FALSE;

 RUN_TIME_CALC;

 return;

}

5-10

 MISRA C:2012 Directive 4.3

Check Information
Group: Code Design
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-11

5 MISRA C 2012

MISRA C:2012 Directive 4.5
Identifiers in the same name space with overlapping visibility should be typographically
unambiguous

Description

Rule Definition

Identifiers in the same name space with overlapping visibility should be typographically
unambiguous.

Rationale

What “unambiguous” means depends on the alphabet and language in which source
code is written. When you use identifiers that are typographically close, you can confuse
between them.

For the Latin alphabet as used in English words, at a minimum, the identifiers should
not differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.
• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

Message in Report

Identifiers in the same name space with overlapping visibility should be typographically
unambiguous.

5-12

 MISRA C:2012 Directive 4.5

Examples

Typographically Ambiguous Identifiers

void func(void) {

 int id1_numval;

 int id1_num_val; /* Non-compliant */

 int id2_numval;

 int id2_numVal; /* Non-compliant */

 int id3_lvalue;

 int id3_Ivalue; /* Non-compliant */

 int id4_xyz;

 int id4_xy2; /* Non-compliant */

 int id5_zerO;

 int id5_zer0; /* Non-compliant */

 int id6_rn;

 int id6_m; /* Non-compliant */

}

In this example, the rule is violated when identifiers that can be confused for each other
are used.

Check Information
Group: Code design
Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-13

5 MISRA C 2012

Introduced in R2015b

5-14

 MISRA C:2012 Directive 4.6

MISRA C:2012 Directive 4.6
typedefs that indicate size and signedness should be used in place of the basic
numerical types

Description

Rule Definition

typedefs that indicate size and signedness should be used in place of the basic
numerical types.

Rationale

When the amount of memory being allocated is important, using specific-length types
makes it clear how much storage is being reserved for each object.

Polyspace Specification

Polyspace does consider the use of basic types in a typedef statement as a violation of
this directive.

Message in Report

typedefs that indicate size and signedness should be used in place of the basic numerical
types

Check Information
Group: Code Design
Category: Advisory
AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”

5-15

5 MISRA C 2012

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-16

 MISRA C:2012 Directive 4.9

MISRA C:2012 Directive 4.9
A function should be used in preference to a function-like macro where they are
interchangeable

Description

Rule Definition

A function should be used in preference to a function-like macro where they are
interchangeable.

Rationale

In most circumstances, use functions instead of macros. Functions perform argument
type-checking and evaluate their arguments once, avoiding problems with potential
multiple side effects.

Polyspace Specification

Polyspace considers all function-like macro definitions.

Message in Report

A function should be used in preference to a function-like macro where they are
interchangeable

Check Information
Group: Code Design
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 13.2 | MISRA C:2012 Rule 20.7

5-17

5 MISRA C 2012

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-18

 MISRA C:2012 Directive 4.10

MISRA C:2012 Directive 4.10

Precautions shall be taken in order to prevent the contents of a header file being included
more than once

Description

Rule Definition

Precautions shall be taken in order to prevent the contents of a header file being included
more than once.

Rationale

When a translation unit contains a complex hierarchy of nested header files, it is possible
for a particular header file to be included more than once. This situation can be a source
of confusion. If this multiple inclusion leads to multiple or conflicting definitions, then
your program can have undefined or erroneous behavior.

Polyspace Specification

Try to prevent multiple inclusions when a header file is formatted as:

#ifndef <control macro>

#define <control macro>

 contents

#endif

or

#ifdef <control macro>

#error ...

#else

#define <control macro>

 contents

#endif

Otherwise, Polyspace flags the inclusion as non-compliant.

5-19

5 MISRA C 2012

Message in Report

Precautions shall be taken in order to prevent the contents of a header file being included
more than once.

Check Information
Group: Code Design
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-20

 MISRA C:2012 Directive 4.11

MISRA C:2012 Directive 4.11
The validity of values passed to library functions shall be checked

Description

Rule Definition

The validity of values passed to library functions shall be checked.

Rationale

Many Standard C functions do not check the validity of parameters passed to them.
Even if checks are performed by a compiler, there is no guarantee that the checks are
adequate. For example, you should not pass negative numbers to sqrt or log.

Polyspace Specification

Polyspace raises a violation result for library function arguments if the following are all
true:

• Argument is a local variable.
• Local variable is not tested between last assignment and call to the library function.
• Corresponding parameter of the library function has a restricted input domain.
• Library function is one of the following common mathematical functions:

• sqrt

• tan

• pow

• log

• log10

• fmod

• acos

• asin

5-21

5 MISRA C 2012

• acosh

• atanh

• or atan2

Message in Report

The validity of values passed to library functions shall be checked

Check Information
Group: Code Design
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-22

 MISRA C:2012 Directive 4.13

MISRA C:2012 Directive 4.13
Functions which are designed to provide operations on a resource should be called in an
appropriate sequence

Description

Rule Definition

Functions which are designed to provide operations on a resource should be called in an
appropriate sequence.

Rationale

You typically use functions operating on a resource in the following way:

1 You allocate the resource.

For example, you open a file or critical section.
2 You use the resource.

For example, you read from the file or perform operations in the critical section.
3 You deallocate the resource.

For example, you close the file or critical section.

For your functions to operate as you expect, perform the steps in sequence. For instance,
if you call a resource allocation function on a certain execution path, you must call a
deallocation function on that path.

Polyspace Specification

Polyspace Bug Finder detects a violation of this rule if you specify multitasking options
and your code contains one of these defects:

• Missing lock: A task calls an unlock function before calling the corresponding lock
function.

5-23

5 MISRA C 2012

• Missing unlock: A task calls a lock function but ends without a call to the
corresponding unlock function.

• Double lock: A task calls a lock function twice without an intermediate call to an
unlock function.

• Double unlock: A task calls an unlock function twice without an intermediate call to a
lock function.

For more information on the multitasking options, see “Multitasking”.

Message in Report

Functions which are designed to provide operations on a resource should be called in an
appropriate sequence.

Examples

Multitasking: Lock Function That Is Missing Unlock Function

typedef signed int int32_t;

typedef signed short int16_t;

typedef struct tag_mutex_t {

 int32_t value;

} mutex_t;

extern mutex_t mutex_lock (void);

extern void mutex_unlock (mutex_t m);

extern int16_t x;

void func(void);

void task1(void) {

 func();

}

void task2(void) {

 func();

}

5-24

 MISRA C:2012 Directive 4.13

void func (void) {

 mutex_t m = mutex_lock (); /* Non-compliant */

 if (x > 0) {

 mutex_unlock (m);

 } else {

 /* Mutex not unlocked on this path */

 }

}

In this example, the rule is violated when:

• You specify that the functions mutex_lock and mutex_unlock are paired.

mutex_lock begins a critical section and mutex_unlock ends it.
• The function mutex_lock is called. However, if x <= 0, the function mutex_unlock

is not called.

To enable detection of this rule violation, you must specify these analysis options.

Option Specification

Configure multitasking
manually
Entry points task1

task2

Starting procedure Ending procedureCritical section details
mutex_lock mutex_unlock

For more information on the options, see:

• Entry points (-entry-points)
• Critical section details (-critical-section-begin -critical-section-end)

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory

5-25

5 MISRA C 2012

Language: C90, C99

See Also
MISRA C:2012 Rule 22.1 | MISRA C:2012 Rule 22.2 | MISRA C:2012 Rule
22.6

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5-26

 MISRA C:2012 Rule 1.1

MISRA C:2012 Rule 1.1
The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation’s translation limits

Description

Rule Definition

The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation’s translation limits.

Polyspace Specification

Standard compilation error messages do not lead to a violation of this MISRA rule.

Message in Report

• Too many nesting levels of #includes: N1. The limit is N0.
• Integer constant is too large.
• ANSI C does not allow '#XX'.
• Text following preprocessing directive violates ANSI standard.
• Too many macro definitions: N1. The limit is N0.
• Array of zero size should not be used.
• Integer constant does not fit within long int.
• Integer constant does not fit within unsigned long int.
• Too many nesting levels for control flow: N1. The limit is N0.
• Assembly language should not be used.
• Too many enumeration constants: N1. The limit is N0.

Check Information
Group: Standard C Environment

5-27

5 MISRA C 2012

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-28

 MISRA C:2012 Rule 1.2

MISRA C:2012 Rule 1.2
Language extensions should not be used

Description

Rule Definition

Language extensions should not be used.

Rationale

If a program uses language extensions, its portability is reduced. Even if you document
the language extensions, the documentation might not describe the behavior in all
circumstances.

Polyspace Specification

All the supported extensions lead to a violation of this MISRA rule.

Message in Report

• ANSI C90 forbids hexadecimal floating-point constants.
• ANSI C90 forbids universal character names.
• ANSI C90 forbids mixed declarations and code.
• ANSI C90/C99 forbids case ranges.
• ANSI C90/C99 forbids local label declaration.
• ANSI C90 forbids mixed declarations and code.
• ANSI C90/C99 forbids typeof operator.
• ANSI C90/C99 forbids casts to union.
• ANSI C90 forbids compound literals.
• ANSI C90/C99 forbids statements and declarations in expressions.
• ANSI C90 forbids __func__ predefined identifier.

5-29

5 MISRA C 2012

• ANSI C90 forbids keyword '_Bool'.
• ANSI C90 forbids 'long long int' type.
• ANSI C90 forbids long long integer constants.
• ANSI C90 forbids 'long double' type.
• ANSI C90/C99 forbids 'short long int' type.
• ANSI C90 forbids _Pragma preprocessing operator.
• ANSI C90 does not allow macros with variable arguments list.
• ANSI C90 forbids designated initializer.

Keyword 'inline' should not be used.

Check Information
Group: Standard C Environment
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 1.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-30

 MISRA C:2012 Rule 1.3

MISRA C:2012 Rule 1.3
There shall be no occurrence of undefined or critical unspecified behaviour

Description

Rule Definition

There shall be no occurrence of undefined or critical unspecified behaviour.

Message in Report

There shall be no occurrence of undefined or critical unspecified behavior

• 'defined' without an identifier.
• macro 'XX' used with too few arguments.
• macro 'XX used with too many arguments.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-31

5 MISRA C 2012

Introduced in R2014b

5-32

 MISRA C:2012 Rule 2.1

MISRA C:2012 Rule 2.1
A project shall not contain unreachable code

Description

Rule Definition

A project shall not contain unreachable code.

Rationale

Unless a program exhibits any undefined behavior, unreachable code cannot execute. The
unreachable code cannot affect the program output. The presence of unreachable code
can indicate an error in the program logic. Unreachable code that the compiler does not
remove wastes resources, for example:

• It occupies space in the target machine memory.
• Its presence can cause a compiler to select longer, slower jump instructions when

transferring control around the unreachable code.
• Within a loop, it can prevent the entire loop from residing in an instruction cache.

Polyspace Specification

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

A project shall not contain unreachable code.

Examples

Code Following return Statement

enum light { red, amber, red_amber, green };

5-33

5 MISRA C 2012

enum light next_light (enum light color)

{

 enum light res;

 switch (color)

 {

 case red:

 res = red_amber;

 break;

 case red_amber:

 res = green;

 break;

 case green:

 res = amber;

 break;

 case amber:

 res = red;

 break;

 default:

 {

 error_handler ();

 break;

 }

 }

 res = color;

 return res;

 res = color; /* Non-compliant */

}

In this example, the rule is violated because there is an unreachable operation following
the return statement.

Check Information
Group: Unused Code
Category: Required
AGC Category: Required
Language: C90, C99

5-34

 MISRA C:2012 Rule 2.1

See Also
MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule 16.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-35

5 MISRA C 2012

MISRA C:2012 Rule 2.2
There shall be no dead code

Description

Rule Definition

There shall be no dead code.

Rationale

If an operation is reachable but removing the operation does not affect program behavior,
the operation constitutes dead code.

The presence of dead code can indicate an error in the program logic. Because a compiler
can remove dead code, its presence can cause confusion for code reviewers.

Operations involving language extensions such as __asm ("NOP"); are not
considered dead code.

Polyspace Specification

Polyspace Bug Finder detects useless write operations during analysis.

Message in Report

There shall be no dead code.

Examples

Redundant Operations

extern volatile unsigned int v;

extern char *p;

5-36

 MISRA C:2012 Rule 2.2

void f (void) {

 unsigned int x;

 (void) v; /* Compliant - Exception*/

 (int) v; /* Non-compliant */

 v >> 3; /* Non-compliant */

 x = 3; /* Non-compliant - Detected in Bug Finder only */

 p++; / Non-compliant */

 (*p)++; /* Compliant */

}

In this example, the rule is violated when an operation is performed on a variable, but
the result of that operation is not used. For instance,

• The operations (int) and >> on the variable v are redundant because the results are
not used.

• The operation = is redundant because the local variable x is not read after the
operation.

• The operation * on p++ is redundant because the result is not used.

The rule is not violated when:

• A variable is cast to void. The cast indicates that you are intentionally not using the
value.

• The result of an operation is used. For instance, the operation * on p is not redundant,
because *p is incremented.

Redundant Function Call

void g (void) {

 /* Compliant */

}

void h (void) {

 g(); /* Non-compliant */

}

In this example, g is an empty function. Though the function itself does not violate the
rule, a call to the function violates the rule.

5-37

5 MISRA C 2012

Check Information
Group: Unused Code
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 17.7 | Write without a further read

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-38

 MISRA C:2012 Rule 2.3

MISRA C:2012 Rule 2.3
A project should not contain unused type declarations

Description

Rule Definition

A project should not contain unused type declarations.

Rationale

If a type is declared but not used, a reviewer does not know if the type is redundant or if
it is unused by mistake.

Message in Report

A project should not contain unused type declarations: type XX is not used.

Examples

Unused Local Type

signed short unusedType (void){

 typedef signed short myType; /* Non-compliant */

 return 67;

}

signed short usedType (void){

 typedef signed short myType; /* Compliant */

 myType tempVar = 67;

 return tempVar;

5-39

5 MISRA C 2012

}

In this example, in function unusedType, the typedef statement defines a new local
type myType. However, this type is never used in the function. Therefore, the rule is
violated.

The rule is not violated in the function usedType because the new type myType is used.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-40

 MISRA C:2012 Rule 2.4

MISRA C:2012 Rule 2.4
A project should not contain unused tag declarations

Description

Rule Definition

A project should not contain unused tag declarations.

Rationale

If a tag is declared but not used, a reviewer does not know if the tag is redundant or if it
is unused by mistake.

Message in Report

A project should not contain unused tag declarations: tag tag_name is not used.

Examples

Tag Defined in Function but Not Used

void unusedTag (void)

{

 enum state1 { S_init, S_run, S_sleep }; /* Non-compliant */

}

void usedTag (void)

{

 enum state2 { S_init, S_run, S_sleep }; /* Compliant */

 enum state2 my_State = S_init;

}

In this example, in the function unusedTag, the tag state1 is defined but not used.
Therefore, the rule is violated.

5-41

5 MISRA C 2012

Tag Used in typedef Only

typedef struct record_t /* Non-compliant */

{

 unsigned short key;

 unsigned short val;

} record1_t;

typedef struct /* Compliant */

{

 unsigned short key;

 unsigned short val;

} record2_t;

record1_t myRecord1_t;

record2_t myRecord2_t;

In this example, the tag record_t appears only in the typedef of record1_t. In the
rest of the translation unit, the type record1_t is used. Therefore, the rule is violated.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-42

 MISRA C:2012 Rule 2.5

MISRA C:2012 Rule 2.5
A project should not contain unused macro declarations

Description

Rule Definition

A project should not contain unused macro declarations.

Rationale

If a macro is declared but not used, a reviewer does not know if the macro is redundant
or if it is unused by mistake.

Message in Report

A project should not contain unused macro declarations: macro macro_name is not used.

Examples

Unused Macro Definition

void use_macro (void)

{

 #define SIZE 4

 #define DATA 3

 use_int16(SIZE);

}

In this example, the macro DATA is never used in the use_macro function.

Check Information
Group: Unused Code

5-43

5 MISRA C 2012

Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-44

 MISRA C:2012 Rule 2.6

MISRA C:2012 Rule 2.6
A function should not contain unused label declarations

Description

Rule Definition

A function should not contain unused label declarations.

Rationale

If you declare a label but do not use it, it is not clear to a reviewer of your code if the label
is redundant or unused by mistake.

Message in Report

A function should not contain unused label declarations.

Label label_name is not used.

Examples

Unused Label Declarations

void use_var(signed short);

void unused_label (void)

{

 signed short x = 6;

label1: /* Non-compliant - label1 not used */

 use_var (x);

}

void used_label (void)

5-45

5 MISRA C 2012

{

 signed short x = 6;

 for (int i=0; i < 5; i++) {

 if (i==2) goto label1;

 }

label1: /* Compliant - label1 used */

 use_var (x);

}

In this example, the rule is violated when the label label1 in function unused_label is
not used.

Check Information
Group: Unused code
Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5-46

 MISRA C:2012 Rule 2.7

MISRA C:2012 Rule 2.7
There should be no unused parameters in functions

Description

Rule Definition

There should be no unused parameters in functions.

Rationale

If a parameter is unused, it is possible that the implementation of the function does not
match its specifications. This rule can highlight such mismatches.

Message in Report

There should be no unused parameters in functions.

Parameter parameter_name is not used.

Examples

Unused Function Parameters

double func(int param1, int* param2) {

 return (param1/2.0);

}

In this example, the rule is violated because the parameter param2 is not used.

Check Information
Group: Unused code
Category: Advisory

5-47

5 MISRA C 2012

AGC Category: Readability
Language: C90, C99

See Also
Unused parameter

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5-48

 MISRA C:2012 Rule 3.1

MISRA C:2012 Rule 3.1
The character sequences /* and // shall not be used within a comment

Description

Rule Definition

The character sequences /* and // shall not be used within a comment.

Rationale

These character sequences are not allowed in code comments because:

• If your code contains a /* or a // in a /* */ comment, it typically means that you
have inadvertently commented out code.

• If your code contains a /* in a // comment, it typically means that you have
inadvertently uncommented a /* */ comment.

Polyspace Specification

You cannot annotate this rule in the source code.

For information on annotations, see “Annotate Code for Known or Acceptable Results”.

Message in Report

The character sequence /* shall not appear within a comment.

Examples

/* Used in // Comments

int x;

int y;

5-49

5 MISRA C 2012

int z;

void non_compliant_comments (void)

{

 x = y // /* Non-compliant

 + z

 // */

 ;

 z++; // Compliant with exception: // permitted within a // comment

}

void compliant_comments (void)

{

 x = y /* Compliant

 + z

 */

 ;

 z++; // Compliant with exception: // is permitted within a // comment

}

In this example, in the non_compliant_comments function, the /* character occurs in
what appears to be a // comment, violating the rule. Because of the comment structure,
the operation that takes place is x = y + z;. However, without the two //-s, an
entirely different operation x=y; takes place. It is not clear which operation is intended.

Use a comment format that makes your intention clear. For instance, in the
compliant_comments function, it is clear that the operation x=y; is intended.

Check Information
Group: Comments
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

5-50

 MISRA C:2012 Rule 3.1

• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-51

5 MISRA C 2012

MISRA C:2012 Rule 3.2
Line-splicing shall not be used in // comments

Description

Rule Definition

Line-splicing shall not be used in // comments.

Rationale

Line-splicing occurs when the \ character is immediately followed by a new-line
character. Line splicing is used for statements that span multiple lines.

If you use line-splicing in a // comment, the following line can become part of the
comment. In most cases, the \ is spurious and can cause unintentional commenting out
of code.

Message in Report

Line-splicing shall not be used in // comments.

Examples

Line Splicing in // Comment

#include <stdbool.h>

extern _Bool b;

void func (void)

{

 unsigned short x = 0; // Non-compliant - Line-splicing \

 if (b)

 {

5-52

 MISRA C:2012 Rule 3.2

 ++b;

 }

}

Because of line-splicing, the statement if (b) is a part of the previous // comment.
Therefore, the statement b++ always executes, making the if block redundant.

Check Information
Group: Comments
Category: Required
AGC Category: Required
Language: C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

Introduced in R2014b

5-53

5 MISRA C 2012

MISRA C:2012 Rule 4.1
Octal and hexadecimal escape sequences shall be terminated

Description

Rule Definition

Octal and hexadecimal escape sequences shall be terminated.

Rationale

There is potential for confusion if an octal or hexadecimal escape sequence is followed
by other characters. For example, the character constant '\x1f' consists of a single
character, whereas the character constant '\x1g' consists of the two characters '\x1'
and 'g'. The manner in which multi-character constants are represented as integers is
implementation-defined.

If every octal or hexadecimal escape sequence in a character constant or string literal is
terminated, you reduce potential confusion.

Message in Report

Octal and hexadecimal escape sequences shall be terminated.

Examples

Compliant and Noncompliant Escape Sequences

const char *s1 = "\x41g"; /* Non-compliant */

const char *s2 = "\x41" "g"; /* Compliant - Terminated by end of literal */

const char *s3 = "\x41\x67"; /* Compliant - Terminated by another escape sequence*/

int c1 = '\141t'; /* Non-compliant */

int c2 = '\141\t'; /* Compliant - Terminated by another escape sequence*/

5-54

 MISRA C:2012 Rule 4.1

In this example, the rule is violated when an escape sequence is not terminated with the
end of string literal or another escape sequence.

Check Information
Group: Character Sets and Lexical Conventions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-55

5 MISRA C 2012

MISRA C:2012 Rule 4.2
Trigraphs should not be used

Description

Rule Definition

Trigraphs should not be used.

Rationale

You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These
trigraphs can cause accidental confusion with other uses of two question marks.

Note: Digraphs (<: :>, <% %>, %:, %:%:) are permitted because they are tokens.

Polyspace Specification

The Polyspace analysis converts trigraphs to the equivalent character for the defect
analysis. However, Polyspace also raises a MISRA violation.

The standard requires that trigraphs must be transformed before comments are removed
during preprocessing. Therefore, Polyspace raises a violation of this rule even if a
trigraph appears in code comments.

Message in Report

Trigraphs should not be used.

Check Information
Group: Character Sets and Lexical Conventions
Category: Advisory

5-56

 MISRA C:2012 Rule 4.2

AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-57

5 MISRA C 2012

MISRA C:2012 Rule 5.1

External identifiers shall be distinct

Description

Rule Definition

External identifiers shall be distinct.

Rationale

External identifiers are ones declared with global scope or storage class extern.

Polyspace considers two names as distinct if there is a difference between their first
31 characters. If the difference between two names occurs only beyond the first 31
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 6 characters. To use the
C90 rules checking, use the option, Respect C90 Standard on page 1-22.

Message in Report

External %s %s conflicts with the external identifier XX in file YY.

Examples

C90: First Six Characters of Identifiers Not Unique

int engine_temperature_raw;

int engine_temperature_scaled; /* Non-compliant */

int engin2_temperature; /* Compliant */

In this example, the identifier engine_temperature_scaled has the same first six
characters as a previous identifier, engine_temperature_raw.

5-58

 MISRA C:2012 Rule 5.1

C99: First 31 Characters of Identifiers Not Unique

int engine_exhaust_gas_temperature_raw;

int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

int eng_exhaust_gas_temp_raw;

int eng_exhaust_gas_temp_scaled; /* Compliant */

In this example, the identifier engine_exhaust_gas_temperature_scaled
has the same first 31 characters as a previous identifier,
engine_exhaust_gas_temperature_raw.

C90: First Six Characters Identifiers in Different Translation Units Differ in
Case Alone

/* file1.c */

int abc = 0;

/* file2.c */

int ABC = 0; /* Non-compliant */

In this example, the implementation supports 6 significant case-insensitive characters
in external identifiers. The identifiers in the two translation are different but are not
distinct in their significant characters.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4 | MISRA C:2012 Rule 5.5

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

5-59

5 MISRA C 2012

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-60

 MISRA C:2012 Rule 5.2

MISRA C:2012 Rule 5.2
Identifiers declared in the same scope and name space shall be distinct

Description

Rule Definition

Identifiers declared in the same scope and name space shall be distinct.

Rationale

Polyspace considers two names as distinct if there is a difference between their first
63 characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the option, Respect C90 Standard on page 1-22.

Message in Report

Identifier XX has same significant characters as identifier YY.

Examples

C90: First 31 Characters of Identifiers Not Unique

extern int engine_exhaust_gas_temperature_raw;

static int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

extern double engine_exhaust_gas_temperature_raw;

static double engine_exhaust_gas_temperature2_scaled; /* Compliant */

void func (void)

{

 /* Not in the same scope */

 int engine_exhaust_gas_temperature_local; /* Compliant */

}

5-61

5 MISRA C 2012

In this example, the identifier engine_exhaust_gas_temperature_scaled has the
same 31 characters as a previous identifier, engine_exhaust_gas_temperature_raw.

The rule does not apply if the two identifiers have the same 31 characters but have
different scopes. For instance, engine_exhaust_gas_temperature_local has the
same 31 characters as engine_exhaust_gas_temperature_raw but different scope.

C99: First 63 Characters of Identifiers Not Unique

extern int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_raw;

static int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_scale;

 /* Non-compliant */

extern int engine_gas_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx__raw;

static int engine_gas_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx__scale;

 /* Compliant */

void func (void)

{

/* Not in the same scope */

 int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_local;

 /* Compliant */

}

In this example, the identifier
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_scale

has the same 63 characters as a previous identifier,
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_raw.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.3 | MISRA C:2012 Rule 5.4 | MISRA
C:2012 Rule 5.5

5-62

 MISRA C:2012 Rule 5.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-63

5 MISRA C 2012

MISRA C:2012 Rule 5.3
An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope

Description

Rule Definition

An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope.

Rationale

If two identifiers have the same name but different scope, the identifier in the inner
scope hides the identifier in the outer scope. All uses of the identifier name refers to the
identifier in the inner scope. This behavior forces the developer to keep track of the scope
and reduces code readability.

Polyspace considers two names as distinct if there is a difference between their first
63 characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the option, Respect C90 Standard on page 1-22.

Message in Report

Variable XX hides variable XX (FILE line LINE column COLUMN).

Examples

Local Variable Hidden by Another Local Variable in Inner Block

typedef signed short int16_t;

5-64

 MISRA C:2012 Rule 5.3

void func(void)

{

 int16_t i;

 {

 int16_t i; /* Non-compliant */

 i = 3;

 }

}

In this example, the identifier i defined in the inner block in func hides the identifier i
with function scope.

It is not immediately clear to a reader which i is referred to in the statement i=3.

Global Variable Hidden by Function Parameter

typedef signed short int16_t;

struct astruct

{

 int16_t m;

};

extern void g (struct astruct *p);

int16_t xyz = 0;

void func (struct astruct xyz) /* Non-compliant */

{

 g (&xyz);

}

In this example, the parameter xyz of function func hides the global variable xyz.

It is not immediately clear to a reader which xyz is referred to in the statement g
(&xyz).

Check Information
Group: Identifiers
Category: Required
AGC Category: Advisory
Language: C90, C99

5-65

5 MISRA C 2012

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.8

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-66

 MISRA C:2012 Rule 5.4

MISRA C:2012 Rule 5.4
Macro identifiers shall be distinct

Description

Rule Definition

Macro identifiers shall be distinct.

Rationale

The names of macro identifiers must be distinct from both other macro identifiers and
their parameters.

Polyspace considers two names as distinct if there is a difference between their first
63 characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the option, Respect C90 Standard on page 1-22.

Message in Report

• Macro identifiers shall be distinct. Macro XX has same significant characters as
macro YY.

• Macro identifiers shall be distinct. Macro parameter XX has same significant
characters as macro parameter YY in macro ZZ.

Examples

C90: First 31 Characters of Macro Names Not Unique

#define engine_exhaust_gas_temperature_raw egt_r

#define engine_exhaust_gas_temperature_scaled egt_s /* Non-compliant */

5-67

5 MISRA C 2012

#define engine_exhaust_gas_temp_raw egt_r

#define engine_exhaust_gas_temp_scaled egt_s /* Compliant */

In this example, the macro engine_exhaust_gas_temperature_scaled
egt_s has the same first 31 characters as a previous macro
engine_exhaust_gas_temperature_scaled.

C99: First 63 Characters of Macro Names Not Unique

#define engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw egt_r

#define engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw_scaled egt_s

 /* Non-compliant */

/* 63 significant case-sensitive characters in macro identifiers */

#define new_engine_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw egt_r

#define new_engine_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_scaled egt_s

 /* Compliant */

In this example, the macro
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx___gaz_scaled

has the same first 63 characters as a previous macro
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx___raw.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.5

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-68

 MISRA C:2012 Rule 5.4

Introduced in R2014b

5-69

5 MISRA C 2012

MISRA C:2012 Rule 5.5
Identifiers shall be distinct from macro names

Description

Rule Definition

Identifiers shall be distinct from macro names.

Rationale

The rule requires that macro names that exist only prior to processing must be different
from identifier names that also exist after preprocessing. Keeping macro names and
identifiers distinct help avoid confusion.

Polyspace considers two names as distinct if there is a difference between their first
63 characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the option, Respect C90 Standard on page 1-22.

Message in Report

Identifier XX has same significant characters as macro YY.

Examples

Macro Names Same as Identifier Names

#define Sum_1(x, y) ((x) + (y))

short Sum_1; /* Non-compliant */

#define Sum_2(x, y) ((x) + (y))

short x = Sum_2 (1, 2); /* Compliant */

5-70

 MISRA C:2012 Rule 5.5

In this example, Sum_1 is both the name of an identifier and a macro. Sum_2 is used only
as a macro.

C90: First 31 Characters of Macro Name Same as Identifier Name

#define low_pressure_turbine_temperature_1 lp_tb_temp_1

static int low_pressure_turbine_temperature_2; /* Non-compliant */

In this example, the identifier low_pressure_turbine_temperature_2 has the same
first 31 characters as a previous macro low_pressure_turbine_temperature_1.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-71

5 MISRA C 2012

MISRA C:2012 Rule 5.6
A typedef name shall be a unique identifier

Description

Rule Definition

A typedef name shall be a unique identifier.

Rationale

Reusing a typedef name as another typedef or as the name of a function, object or
enum constant can cause developer confusion.

Message in Report

XX conflicts with the typedef name YY.

Examples

typedef Names Reused

void func (void){

 {

 typedef unsigned char u8_t;

 }

 {

 typedef unsigned char u8_t; /* Non-compliant */

 }

}

typedef float mass;

void func1 (void){

 float mass = 0.0f; /* Non-compliant */

}

5-72

 MISRA C:2012 Rule 5.6

In this example, the typedef name u8_t is used twice. The typedef name mass is also
used as an identifier name.

typedef Name Same as Structure Name

typedef struct list{ /* Compliant - exception */

 struct list *next;

 unsigned short element;

} list;

typedef struct{

 struct chain{ /* Non-compliant */

 struct chain *list2;

 unsigned short element;

 } s1;

 unsigned short length;

} chain;

In this example, the typedef name list is the same as the original name of the struct
type. The rule allows this exceptional case.

However, the typedef name chain is not the same as the original name of the struct
type. The name chain is associated with a different struct type. Therefore, it clashes
with the typedef name.

Check Information
Group: Identifiers
Category:
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.7

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

5-73

5 MISRA C 2012

• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-74

 MISRA C:2012 Rule 5.7

MISRA C:2012 Rule 5.7
A tag name shall be a unique identifier

Description

Rule Definition

A tag name shall be a unique identifier.

Rationale

Reusing a tag name can cause developer confusion.

Message in Report

XX conflicts with the tag name YY.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.6

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-75

5 MISRA C 2012

Introduced in R2014b

5-76

 MISRA C:2012 Rule 5.8

MISRA C:2012 Rule 5.8
Identifiers that define objects or functions with external linkage shall be unique

Description

Rule Definition

Identifiers that define objects or functions with external linkage shall be unique.

Rationale

External identifiers are those declared with global scope or with storage class extern.
Reusing an external identifier name can cause developer confusion.

Identifiers defined within a function have smaller scope. Even if names of such
identifiers are not unique, they are not likely to cause confusion.

Message in Report

• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.3

More About
• “Activate Coding Rules Checker”

5-77

5 MISRA C 2012

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-78

 MISRA C:2012 Rule 5.9

MISRA C:2012 Rule 5.9
Identifiers that define objects or functions with internal linkage should be unique

Description

Rule Definition

Identifiers that define objects or functions with internal linkage should be unique.

Polyspace Specification

This rule checker assumes that rule 5.8 is not violated.

Message in Report

• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Check Information
Group: Identifiers
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 8.10

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-79

5 MISRA C 2012

Introduced in R2014b

5-80

 MISRA C:2012 Rule 6.1

MISRA C:2012 Rule 6.1
Bit-fields shall only be declared with an appropriate type

Description

Rule Definition

Bit-fields shall only be declared with an appropriate type.

Rationale

Using int is implementation-defined because bit-fields of type int can be either signed
or unsigned.

The use of enum, short char, or any other type of bit-field is not permitted in C90
because the behavior is undefined.

In C99, the implementation can potentially define other integer types that are permitted
in bit-field declarations.

Message in Report

Bit-fields shall only be declared with an appropriate type.

Check Information
Group: Types
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

5-81

5 MISRA C 2012

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-82

 MISRA C:2012 Rule 6.2

MISRA C:2012 Rule 6.2
Single-bit named bit fields shall not be of a signed type

Description

Rule Definition

Single-bit named bit fields shall not be of a signed type.

Rationale

According to the C99 Standard Section 6.2.6.2, a single-bit signed bit-field has one sign
bit and no value bits. In any representation of integers, zero value bits cannot specify a
meaningful value.

A single-bit signed bit-field is therefore unlikely to behave in a useful way. Its presence is
likely to indicate programmer confusion.

Although the C90 Standard does not provide much detail regarding the representation of
types, the same single-bit bit-field considerations apply.

Polyspace Specification

This rule does not apply to unnamed bit fields because their values cannot be accessed.

Message in Report

Single-bit named bit fields shall not be of a signed type.

Check Information
Group: Types
Category: Required
AGC Category: Required
Language: C90, C99

5-83

5 MISRA C 2012

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-84

 MISRA C:2012 Rule 7.1

MISRA C:2012 Rule 7.1
Octal constants shall not be used

Description

Rule Definition

Octal constants shall not be used.

Rationale

Octal constants are denoted by a leading zero. Developers can mistake an octal constant
as a decimal constant with a redundant leading zero.

Message in Report

Octal constants shall not be used.

Examples

Use of octal constants

#define CST 021

#define VALUE 010 /* Compliant - constant not used */

#if 010 == 01 /* Non-Compliant - constant used */

#define CST 021 /* Compliant - constant not used */

#endif

extern short code[5];

static char* str2 = "abcd\0efg"; /* Compliant */

void main(void) {

 int value1 = 0; /* Compliant */

 int value2 = 01; /* Non-Compliant - decimal 01 */

 int value3 = 1; /* Compliant */

5-85

5 MISRA C 2012

 int value4 = '\109'; /* Compliant */

 code[1] = 109; /* Compliant - decimal 109 */

 code[2] = 100; /* Compliant - decimal 100 */

 code[3] = 052; /* Non-Compliant - decimal 42 */

 code[4] = 071; /* Non-Compliant - decimal 57 */

 if (value1 != CST) { /* Non-Compliant - decimal 17 */

 value1 = !(value1 != 0); /* Compliant */

 }

}

In this example, the rule is not violated when octal constants are used to define macros
CST and VALUE. The rule is violated only when the macros are used.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-86

 MISRA C:2012 Rule 7.2

MISRA C:2012 Rule 7.2
A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type

Description

Rule Definition

A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type.

Rationale

The signedness of a constant is determined from:

• Value of the constant.
• Base of the constant: octal, decimal or hexadecimal.
• Size of the various types.
• Any suffixes used.

Unless you use a suffix u or U, another developer looking at your code cannot determine
easily whether a constant is signed or unsigned.

Message in Report

A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability
Language: C90, C99

5-87

5 MISRA C 2012

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-88

 MISRA C:2012 Rule 7.3

MISRA C:2012 Rule 7.3
The lowercase character “l” shall not be used in a literal suffix

Description

Rule Definition

The lowercase character “l” shall not be used in a literal suffix.

Rationale

The lowercase character “l” can be confused with the digit “1”. Use the uppercase “L”
instead.

Message in Report

The lowercase character “l” shall not be used in a literal suffix.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-89

5 MISRA C 2012

MISRA C:2012 Rule 7.4
A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”

Description

Rule Definition

A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”.

Rationale

This rule prevents assignments that allow modification of a string literal.

An attempt to modify a string literal can result in undefined behavior. For example, some
implementations can store string literals in read-only memory. An attempt to modify the
string literal can result in an exception or crash.

Message in Report

A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”.

Examples

Incorrect Assignment of String Literal

char *str1 = "AccountHolderName";

const char *str2 = "AccountHolderName";

void checkAccount1(char*); /* Non-Compliant */

void checkAccount2(const char*); /* Compliant */

void main() {

5-90

 MISRA C:2012 Rule 7.4

 checkAccount1("AccountHolderName"); /* Non-Compliant */

 checkAccount2("AccountHolderName"); /* Compliant */

}

In this example, the rule is not violated when string literals are assigned to const
char* pointers, either directly or through copy of function arguments. The rule is
violated only when the const qualifier is not used.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.8

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-91

5 MISRA C 2012

MISRA C:2012 Rule 8.1
Types shall be explicitly specified

Description

Rule Definition

Types shall be explicitly specified.

Rationale

The C90 standard permits types to be omitted in some circumstances, in which case the
int type is implicitly specified. Examples of potential circumstances in which you can
use an implicit int are:

• Object declarations
• Parameter declarations
• Member declarations
• typedef declarations
• Function return types

The omission of an explicit type can lead to confusion. For example, in the declaration
extern void foo (char c, const k);, the type of k is const int, but const
char might have been expected.

Message in Report

Types shall be explicitly specified.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

5-92

 MISRA C:2012 Rule 8.1

Language: C90

See Also
MISRA C:2012 Rule 8.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-93

5 MISRA C 2012

MISRA C:2012 Rule 8.2

Function types shall be in prototype form with named parameters

Description

Rule Definition

Function types shall be in prototype form with named parameters.

Rationale

The mismatch between the number of arguments and parameters, their types, and the
expected and actual return type of a function provides potential for undefined behavior.
This rule also requires that you specify names for all the parameters in a declaration.
The parameter names provide useful information regarding the function interface. A
mismatch between a declaration and definition can indicate a programming error.

Polyspace Specification

Polyspace also checks the function definition.

Message in Report

• Too many arguments to function_name.
• Too few arguments to function_name.
• Function types shall be in prototype form with named parameters.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

5-94

 MISRA C:2012 Rule 8.2

See Also
MISRA C:2012 Rule 8.1 | MISRA C:2012 Rule 8.4 | MISRA C:2012 Rule 17.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-95

5 MISRA C 2012

MISRA C:2012 Rule 8.3
All declarations of an object or function shall use the same names and type qualifiers

Description

Rule Definition

All declarations of an object or function shall use the same names and type qualifiers.

Rationale

Consistently using types and qualifiers across declarations of the same object or function
encourages stronger typing. By specifying parameter names in function prototypes,
Polyspace can check for interface consistency between the function definition and
declarations.

Polyspace Specification

Polyspace generates some violations of this rule during the link phase.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

• Definition of function function_name incompatible with its declaration.
• Global declaration of function_name function has incompatible type with its

definition.
• Global declaration of variable_name variable has incompatible type with its

definition.
• All declarations of an object or function shall use the same names and type qualifiers.

Check Information
Group: Declarations and Definitions

5-96

 MISRA C:2012 Rule 8.3

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 8.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-97

5 MISRA C 2012

MISRA C:2012 Rule 8.4
A compatible declaration shall be visible when an object or function with external linkage
is defined

Description

Rule Definition

A compatible declaration shall be visible when an object or function with external linkage
is defined.

Rationale

If a declaration for an object or function is visible when the object or function is defined,
a compiler must check that the declaration and definition are compatible. In the presence
of function prototypes, as required by rule 8.2, checking extends to the number and
type of function parameters. A better way of implementing declarations of objects and
functions with external linkage is to declare them in a header file. Then include the
header file in all those code files that require them, including the one that defines them.

Message in Report

• Global definition of variable_name variable has no previous declaration.
• Function function_name has no visible compatible prototype at definition.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.3 | MISRA C:2012 Rule 8.5 | MISRA
C:2012 Rule 17.3

5-98

 MISRA C:2012 Rule 8.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-99

5 MISRA C 2012

MISRA C:2012 Rule 8.5

An external object or function shall be declared once in one and only one file

Description

Rule Definition

An external object or function shall be declared once in one and only one file.

Rationale

Typically, a single declaration is made in a header file that you include in any translation
unit in which the identifier is defined or used. This inclusion ensures consistency
between:

• The declaration and the definition
• The declarations in different translation units

Note: It is possible to have many header files in a project, but each external object or
function is declared in only one header file.

Polyspace Specification

Polyspace checks only explicit extern declarations (tentative definitions are ignored).

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

• Object object_name has external declarations in multiples files.
• Function function_name has external declarations in multiples files.

5-100

 MISRA C:2012 Rule 8.5

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 8.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-101

5 MISRA C 2012

MISRA C:2012 Rule 8.6

An identifier with external linkage shall have exactly one external definition

Description

Rule Definition

An identifier with external linkage shall have exactly one external definition.

Rationale

The behavior is undefined if you use an identifier for which multiple definitions exist
(in different files) or no definition exists. Multiple definitions in different files are
not permitted by this rule even if the definitions are the same. If the declarations are
different, or initialize the identifier to different values, it is undefined behavior.

Polyspace Specification

Polyspace considers tentative definitions as definitions, but does not raise warnings on
predefined symbols.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

• Forbidden multiple definitions for function function_name.
• Forbidden multiple tentative definitions for object object_name.
• Global variable variable_name multiply defined.
• Function function_name multiply defined.
• Global variable has multiple tentative definitions.
• Undefined global variable variable_name.

5-102

 MISRA C:2012 Rule 8.6

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-103

5 MISRA C 2012

MISRA C:2012 Rule 8.7
Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit

Description

Rule Definition

Functions and objects should not be defined with external linkage if they are referenced in
only one translation unit.

Rationale

Restricting or reducing the visibility of an object by giving it internal linkage or no
linkage reduces the chance that it is accessed inadvertently. Compliance with this rule
also avoids any possibility of confusion between your identifier and an identical identifier
in another translation unit or a library.

Polyspace Specification

If your program does not use the externally defined function or object, Polyspace does not
raise a warning.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

• Variable variable_name should have internal linkage.
• Function function_name should have internal linkage.

Check Information
Group: Declarations and Definitions
Category: Advisory

5-104

 MISRA C:2012 Rule 8.7

AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-105

5 MISRA C 2012

MISRA C:2012 Rule 8.8
The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage

Description

Rule Definition

The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage.

Rationale

If you have an object or function declared with extern, and another declaration of the
object or function is already visible, the linkage can be confusing. You expect that the
extern storage class specifier creates external linkage. Apply the static storage class
specifier to objects and functions with internal linking.

Message in Report

The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage.

Examples

Internal and External Linkage Conflicts

static int foo = 0;

extern int foo; /* Non-compliant */

extern int hhh;

static int hhh; /* Non-compliant */

In this example, the first line defines foo with internal linkage. Because the example
uses the static keyword, the first line is compliant. However, the second line does

5-106

 MISRA C:2012 Rule 8.8

not use static in the declaration, so the declaration is noncompliant. By comparison,
the third line declares hhh with an extern keyword creating external linkage. The
fourth line declares hhh with internal linkage, but this declaration conflicts with the first
declaration of hhh.

Correction — Consistent static and extern Use

One possible correction is to use static and extern consistently:

static int foo = 0;

static int foo;

extern int hhh;

extern int hhh;

Internal linkage

static int fee(void); /* Compliant - declaration: internal linkage */

int fee(void){ /* Non-compliant */

 return 1;

}

static int ggg(void); /* Compliant - declaration: internal linkage */

extern int ggg(void){ /* Non-compliant */

 return 1 + x;

}

This example shows two internal linkage violations. Because fee and ggg have internal
linkage, you must use a static class specifier to be compliant with MISRA

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

5-107

5 MISRA C 2012

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-108

 MISRA C:2012 Rule 8.9

MISRA C:2012 Rule 8.9
An object should be defined at block scope if its identifier only appears in a single
function

Description

Rule Definition

An object should be defined at block scope if its identifier only appears in a single
function.

Rationale

Defining an object at block scope reduces the possibility that you inadvertently access the
object . It ensures your program does not access the object elsewhere.

Polyspace Specification

Polyspace raises a warning only for static objects.

Message in Report

An object should be defined at block scope if its identifier only appears in a single
function.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”

5-109

5 MISRA C 2012

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-110

 MISRA C:2012 Rule 8.10

MISRA C:2012 Rule 8.10
An inline function shall be declared with the static storage class

Description

Rule Definition

An inline function shall be declared with the static storage class.

Rationale

If you call an inline function with external linkage, you can call the external definition
of the function or the inline definition. This behavior can affect the execution time and
therefore impact your program.

Tip To make an inline function available to several translation units, place its definition
in a header file.

Message in Report

An inline function shall be declared with the static storage class.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 5.9

More About
• “Activate Coding Rules Checker”

5-111

5 MISRA C 2012

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-112

 MISRA C:2012 Rule 8.11

MISRA C:2012 Rule 8.11
When an array with external linkage is declared, its size should be explicitly specified

Description

Rule Definition

When an array with external linkage is declared, its size should be explicitly specified.

Rationale

Although it is possible to declare an array with incomplete type and access its elements,
it is safer to state the size of the array explicitly. Providing size information for each
declaration allows the software to check the declarations for consistency. It also allows a
static checker to perform array bounds analysis without analyzing more than one unit.

Message in Report

Size of array array_name should be explicitly stated. When an array with external
linkage is declared, its size should be explicitly specified.

Examples

Array Declarations

extern int32_t array1[10]; /* Compliant */

extern int32_t array2[]; /* Non-compliant */

In this example, two arrays are declared array1 and array2. array1 has external
linkage (the extern keyword) and a size of 10. array2 also has external linkage, but
no specified size. array2 is noncompliant because for arrays with external linkage, you
must explicitly specify a size.

Check Information
Group: Declarations and Definitions

5-113

5 MISRA C 2012

Category: Advisory
AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-114

 MISRA C:2012 Rule 8.12

MISRA C:2012 Rule 8.12
Within an enumerator list, the value of an implicitly-specified enumeration constant
shall be unique

Description

Rule Definition

Within an enumerator list, the value of an implicitly-specified enumeration constant shall
be unique.

Rationale

An implicitly specified enumeration constant has a value 1 greater than its predecessor.
If the first enumeration constant is implicitly specified, then its value is 0. An explicitly
specified enumeration constant has the value of the associate constant expression.

If implicitly and explicitly specified constants are mixed within an enumeration list, it is
possible for your program to replicate values. Such replications can be unintentional and
can cause unexpected behavior.

Message in Report

The constant constant1 has same value as the constant constant2.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”

5-115

5 MISRA C 2012

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-116

 MISRA C:2012 Rule 8.13

MISRA C:2012 Rule 8.13
A pointer should point to a const-qualified type whenever possible

Description

Rule Definition

A pointer should point to a const-qualified type whenever possible.

Rationale

This rule ensures that you do not inadvertently use pointers to modify objects.

Polyspace Specification

Polyspace issues a warning if a non-const pointer parameter either:

• Does not modify the addressed object.
• Is passed to a call of a function that is declared with a const pointer parameter.

Message in Report

A pointer should point to a const-qualified type whenever possible.

Examples

Pointer Parameters

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(uint16_t *p) { /* Non-compliant */

 return *p;

5-117

5 MISRA C 2012

}

char last_char(char * const s){ /* Non-compliant */

 return s[strlen(s) - 1u];

}

uint16_t first(uint16_t a[5]){ /* Non-compliant */

 return a[0];

}

This example shows three different noncompliant pointer parameters. In the ptr_ex
function, p does not modify an object. However, the type to which p points is not const-
qualified, so it is noncompliant. In last_char, the pointer s is const-qualified but
the type it points to is not. Because s does not modify an object, this parameter is
noncompliant. The function first does not modify the elements of the array a. However,
the element type is not const-qualified, so a is also noncompliant.

Correction — Use const Keywords

One possible correction is to add const qualifiers to the definitions.

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(const uint16_t *p){ /* Compliant */

 return *p;

}

char last_char(const char * const s){ /* Compliant */

 return s[strlen(s) - 1u];

}

uint16_t first(const uint16_t a[5]) { /* Compliant */

 return a[0];

}

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

5-118

 MISRA C:2012 Rule 8.13

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-119

5 MISRA C 2012

MISRA C:2012 Rule 8.14
The restrict type qualifier shall not be used

Description

Rule Definition

The restrict type qualifier shall not be used.

Rationale

When you use a restrict qualifier carefully, it improves the efficiency of code generated
by a compiler. It can also improve static analysis. However, when using the restrict
qualifier, make sure that the memory areas operated on by two or more pointers do not
overlap.

Message in Report

The restrict type qualifier shall not be used.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-120

 MISRA C:2012 Rule 9.1

MISRA C:2012 Rule 9.1
The value of an object with automatic storage duration shall not be read before it has
been set

Description

Message in Report:

Rule Definition

The value of an object with automatic storage duration shall not be read before it has been
set.

Rationale

A variable with an automatic storage duration is allocated memory at the beginning of
an enclosing code block and deallocated at the end. All non-global variables have this
storage duration, except those declared static or extern.

Variables with automatic storage duration are not automatically initialized and have
indeterminate values. Therefore, you must not read such a variable before you have set
its value through a write operation.

Polyspace Specification

The Polyspace analysis checks some of the violations as non-initialized variables. For
more information, see Non-initialized variable.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

The value of an object with automatic storage duration shall not be read before it has
been set.

5-121

5 MISRA C 2012

Check Information
Group: Initialization
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-122

 MISRA C:2012 Rule 9.2

MISRA C:2012 Rule 9.2
The initializer for an aggregate or union shall be enclosed in braces

Description

Rule Definition

The initializer for an aggregate or union shall be enclosed in braces.

Rationale

The rule applies to both objects and subobjects. For example, when initializing a
structure that contains an array, the values assigned to the structure must be enclosed in
braces. Within these braces, the values assigned to the array must be enclosed in another
pair of braces.

Enclosing initializers in braces improves clarity of code that contains complex data
structures such as multidimensional arrays and arrays of structures.

Tip To avoid nested braces for subobjects, use the syntax {0}, which sets all values to
zero.

Message in Report

The initializer for an aggregate or union shall be enclosed in braces.

Examples

Initialization of Two-dimensional Arrays

void initialize(void) {

 int x[4][2] = {{0,0},{1,0},{0,1},{1,1}}; /* Compliant */

 int y[4][2] = {{0},{1,0},{0,1},{1,1}}; /* Compliant */

5-123

5 MISRA C 2012

 int z[4][2] = {0}; /* Compliant */

 int w[4][2] = {0,0,1,0,0,1,1,1}; /* Non-compliant */

}

In this example, the rule is not violated when:

• Initializers for each row of the array are enclosed in braces.
• The syntax {0} initializes all elements to zero.

The rule is violated when a separate pair of braces is not used to enclose the initializers
for each row.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-124

 MISRA C:2012 Rule 9.3

MISRA C:2012 Rule 9.3
Arrays shall not be partially initialized

Description

Rule Definition

Arrays shall not be partially initialized.

Rationale

Providing an explicit initialization for each array element makes it clear that every
element has been considered.

Message in Report

Arrays shall not be partially initialized.

Examples

Partial and Complete Initializations

void func(void) {

 int x[3] = {0,1,2}; /* Compliant */

 int y[3] = {0,1}; /* Non-compliant */

 int z[3] = {0}; /* Compliant - exception */

 int a[30] = {[1] = 1,[15]=1}; /* Compliant - exception */

 int b[30] = {{1} = 1, 1}; /* Non-compliant */

 char c[20] = "Hello World"; /* Compliant - exception */

}

In this example, the rule is not violated when each array element is explicitly initialized.

The rule is violated when some elements of the array are implicitly initialized.
Exceptions include the following:

5-125

5 MISRA C 2012

• The initializer has the form {0}, which initializes all elements to zero.
• The array initializer consists only of designated initializers. Typically, you use this

approach for sparse initialization.
• The array is initialized using a string literal.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-126

 MISRA C:2012 Rule 9.4

MISRA C:2012 Rule 9.4

An element of an object shall not be initialized more than once

Description

Rule Definition

An element of an object shall not be initialized more than once.

Rationale

Designated initializers allow explicitly initializing elements of objects such as arrays in
any order. However, using designated initializers, one can inadvertently initialize the
same element twice and therefore overwrite the first initialization.

Message in Report

An element of an object shall not be initialized more than once.

Examples

Array Initialization Using Designated Initializers

void func(void) {

 int a[5] = {-2,-1,0,1,2}; /* Compliant */

 int b[5] = {[0]=-2, [1]=-1, [2]=0, [3]=1, [4]=2};

 /* Compliant */

 int c[5] = {[0]=-2, [1]=-1, [1]=0, [3]=1, [4]=2};

 /* Non-compliant */

}

In this example, the rule is violated when the array element c[1] is initialized twice
using a designated initializer.

5-127

5 MISRA C 2012

Structure Initialization Using Designated Initializers

struct myStruct {

 int a;

 int b;

 int c;

 int d;

};

void func(void) {

 struct myStruct struct1 = {-4,-2,2,4}; /* Compliant */

 struct myStruct struct2 = {.a=-4, .b=-2, .c=2, .d=4};

 /* Compliant */

 struct myStruct struct3 = {.a=-4, .b=-2, .b=2, .d=4};

 /* Non-compliant */

}

In this example, the rule is violated when struct3.b is initialized twice using a
designated initializer.

Check Information
Group: Initialization
Category: Required
AGC Category: Required
Language: C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-128

 MISRA C:2012 Rule 9.5

MISRA C:2012 Rule 9.5
Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly

Description

Rule Definition

Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

Rationale

If the size of an array is not specified explicitly, it is determined by the highest index of
the elements that are initialized. When using long designated initializers, it might not be
immediately apparent which element has the highest index.

Message in Report

Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

Examples

Using Designated Initializers Without Specifying Array Size

int a[5] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Compliant */

int b[] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Non-compliant */

int c[] = {[0]= 1, [1] = 1, [2]= 1, [3]=0, [4] = 1}; /* Non-compliant */

void display(int);

void main() {

 func(a,5);

 func(b,5);

5-129

5 MISRA C 2012

 func(c,5);

}

void func(int* arr, int size) {

 for(int i=0; i<size; i++)

 display(arr[i]);

}

In this example, the rule is violated when the arrays b and c are initialized using
designated initializers but the array size is not specified.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-130

 MISRA C:2012 Rule 10.1

MISRA C:2012 Rule 10.1

Operands shall not be of an inappropriate essential type

Description

Rule Definition

Operands shall not be of an inappropriate essential type.

Rationale

What Are Essential Types?

An essential type category defines the essential type of an object or expression.

Essential type category Standard types

Essentially Boolean bool or _Bool (defined in stdbool.h)

If you define a boolean type through a typedef, you must
specify this type name before coding rules checking. For
more information, see “Specify Boolean Types”.

Essentially character char

Essentially enum named enum
Essentially signed signed char, signed short, signed int, signed long,

signed long long
Essentially unsigned unsigned char, unsigned short, unsigned int, unsigned

long, unsigned long long
Essentially floating float, double, long double

Amplification and Rationale

For operands of some operators, you cannot use certain essential types. In the table
below, each row represents an operator/operand combination. If the essential type

5-131

5 MISRA C 2012

column is not empty for that row, there is a MISRA restriction when using that type as
the operand. The number in the table corresponds to the rationale list after the table.

Operation Essential type category of arithmetic operand

Operator Operand Boolean character enum signed unsigned floating
[] integer 3 4 1

+ (unary) 3 4 5
- (unary) 3 4 5 8

+ - either 3 5
* / either 3 4 5
% either 3 4 5 1

< > <= >= either 3
== != either
! && || any 2 2 2 2 2
<< >> left 3 4 5,6 6 1
<< >> right 3 4 7 7 1
~ & | ^ any 3 4 5,6 6 1

?: 1st 2 2 2 2 2
?: 2nd and 3rd

1 An expression of essentially floating type for these operands is a constraint violation.
2 When an operand is interpreted as a Boolean value, use an expression of essentially

Boolean type.
3 When an operand is interpreted as a numeric value, do not use an operand of

essentially Boolean type.
4 When an operand is interpreted as a numeric value, do not use an operand

of essentially character type. The numeric values of character data are
implementation-defined.

5 In an arithmetic operation, do not use an operand of essentially enum type. An enum
object uses an implementation-defined integer type. An operation involving an enum
object can therefore yield a result with an unexpected type.

5-132

 MISRA C:2012 Rule 10.1

6 Perform only shift and bitwise operations on operands of essentially unsigned type.
When you use shift and bitwise operations on essentially signed types, the resulting
numeric value is implementation-defined.

7 To avoid undefined behavior on negative shifts, use an essentially unsigned right-
hand operand.

8 For the unary minus operator, do not use an operand of essentially unsigned type.
The implemented size of int determines the signedness of the result.

Message in Report

The operand_name operand of the operator_name operator is of an inappropriate
essential type category category_name.

Examples

Violation of Rule 10.1, Rationale 2: Inappropriate Operand Types for
Operators That Take Essentially Boolean Operands

typedef unsigned char boolean;

extern float f32a;

extern char cha;

extern signed char s8a;

extern unsigned char u8a;

enum enuma { a1, a2, a3 } ena;

extern boolean bla, blb, rbla;

void foo(void) {

 rbla = cha && bla; /* Non-compliant: cha is essentially char */

 enb = ena ? a1 : a2; /* Non-compliant: ena is essentially enum */

 rbla = s8a && bla; /* Non-compliant: s8a is essentially signed char */

 ena = u8a ? a1 : a2; /* Non-compliant: u8a is essentially unsigned char */

 rbla = f32a && bla; /* Non-compliant: f32a is essentially float */

 rbla = bla && blb; /* Compliant */

 ru8a = bla ? u8a : u8b; /* Compliant */

5-133

5 MISRA C 2012

}

In the noncompliant examples, rule 10.1 is violated because:

• The operator && expects only essentially Boolean operands. However, at least one of
the operands used has a different type.

• The first operand of ?: is expected to be essentially Boolean. However, a different
operand type is used.

Note: For Polyspace to detect the rule violation, you must define the type name boolean
as an effective Boolean type. For more information, see “Specify Boolean Types”.

Violation of Rule 10.1, Rationale 3: Inappropriate Boolean Operands

typedef unsigned char boolean;

enum enuma { a1, a2, a3 } ena;

enum { K1 = 1, K2 = 2 }; /* Essentially signed */

extern char cha, chb;

extern boolean bla, blb, rbla;

extern signed char rs8a, s8a;

void foo(void) {

 rbla = bla * blb; /* Non-compliant - Boolean used as a numeric value */

 rbla = bla > blb; /* Non-compliant - Boolean used as a numeric value */

 rbla = bla && blb; /* Compliant */

 rbla = cha > chb; /* Compliant */

 rbla = ena > a1; /* Compliant */

 rbla = u8a > 0U; /* Compliant */

 rs8a = K1 * s8a; /* Compliant - K1 obtained from anonymous enum */

}

In the noncompliant examples, rule 10.1 is violated because the operators * and > do not
expect essentially Boolean operands. However, the operands used here are essentially
Boolean.

5-134

 MISRA C:2012 Rule 10.1

Note: For Polyspace to detect the rule violation, you must define the type name boolean
as an effective Boolean type. For more information, see “Specify Boolean Types”.

Violation of Rule 10.1, Rationale 4: Inappropriate Character Operands

extern char rcha, cha, chb;

extern unsigned char ru8a, u8a;

void foo(void) {

 rcha = cha & chb; /* Non-compliant - char type used as a numeric value */

 rcha = cha << 1; /* Non-compliant - char type used as a numeric value */

 ru8a = u8a & 2U; /* Compliant */

 ru8a = u8a << 2U; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because the operators & and << do
not expect essentially character operands. However, at least one of the operands used
here has essentially character type.

Violation of Rule 10.1, Rationale 5: Inappropriate Enum Operands

typedef unsigned char boolean;

enum enuma { a1, a2, a3 } rena, ena, enb;

void foo(void) {

 ena--; /* Non-Compliant - arithmetic operation with enum type*/

 rena = ena * a1; /* Non-Compliant - arithmetic operation with enum type*/

 ena += a1; /* Non-Compliant - arithmetic operation with enum type*/

}

In the noncompliant examples, rule 10.1 is violated because the arithmetic operators --,
* and += do not expect essentially enum operands. However, at least one of the operands
used here has essentially enum type.

5-135

5 MISRA C 2012

Violation of Rule 10.1, Rationale 6: Inappropriate Signed Operand for
Bitwise Operations

extern signed char s8a;

extern unsigned char ru8a, u8a;

void foo(void) {

 ru8a = s8a & 2; /* Non-compliant - bitwise operation on signed type */

 ru8a = 2 << 3U; /* Non-compliant - shift operation on signed type */

 ru8a = u8a << 2U; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because the & and << operations
must not be performed on essentially signed operands. However, the operands used here
are signed.

Violation of Rule 10.1, Rationale 7: Inappropriate Signed Right Operand
for Shift Operations

extern signed char s8a;

extern unsigned char ru8a, u8a;

void foo(void) {

 ru8a = u8a << s8a; /* Non-compliant - shift magnitude uses signed type */

 ru8a = u8a << -1; /* Non-compliant - shift magnitude uses signed type */

 ru8a = u8a << 2U; /* Compliant */

 ru8a = u8a << 1; /* Compliant - exception */

}

In the noncompliant examples, rule 10.1 is violated because the operation << does not
expect an essentially signed right operand. However, the right operands used here are
signed.

Check Information
Group: The Essential Type Model

5-136

 MISRA C:2012 Rule 10.1

Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-137

5 MISRA C 2012

MISRA C:2012 Rule 10.2
Expressions of essentially character type shall not be used inappropriately in addition
and subtraction operations

Description

Rule Definition

Expressions of essentially character type shall not be used inappropriately in addition and
subtraction operations.

Rationale

Essentially character type expressions are char variables. Do not use character data
arithmetically because the data does not represent numeric values.

For information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report

• The operand_name operand of the + operator applied to an expression of essentially
character type shall have essentially signed or unsigned type.

• The right operand of the - operator applied to an expression of essentially character
type shall have essentially signed or unsigned or character type.

• The left operand of the - operator shall have essentially character type if the right
operand has essentially character type.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.1

5-138

 MISRA C:2012 Rule 10.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-139

5 MISRA C 2012

MISRA C:2012 Rule 10.3
The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category

Description

Rule Definition

The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category.

Rationale

The use of implicit conversions between types can lead to unintended results, including
possible loss of value, sign, or precision.

For information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report

• The expression is assigned to an object with a different essential type category.
• The expression is assigned to an object with a narrower essential type.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.4 | MISRA C:2012 Rule 10.5 | MISRA C:2012 Rule 10.6

More About
• “Activate Coding Rules Checker”

5-140

 MISRA C:2012 Rule 10.3

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-141

5 MISRA C 2012

MISRA C:2012 Rule 10.4
Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category

Description

Rule Definition

Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category.

Rationale

The use of implicit conversions between types can lead to unintended results, including
possible loss of value, sign, or precision.

For information on essential types, see MISRA C:2012 Rule 10.1.

Polyspace Specification

Polyspace does not produce a violation of this rule:

• If one of the operands is the constant zero.
• If one of the operands is a signed constant and the other operand is unsigned, and the

signed constant has the same representation as its unsigned equivalent.

For instance, the statement u8b = u8a + 3;, where u8a and u8b are unsigned
char variables, does not violate the rule because the constants 3 and 3U have the
same representation.

Message in Report

Operands of operator_name operator shall have the same essential type category.

Check Information
Group: The Essential Type Model

5-142

 MISRA C:2012 Rule 10.4

Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-143

5 MISRA C 2012

MISRA C:2012 Rule 10.5
The value of an expression should not be cast to an inappropriate essential type

Description

Rule Definition

The value of an expression should not be cast to an inappropriate essential type.

Rationale

Converting Between Variable Types

From
Boolean character enum signed unsigned floating

Boolean Avoid Avoid Avoid Avoid Avoid
character Avoid Avoid

enum Avoid Avoid Avoid Avoid Avoid Avoid
signed Avoid

unsigned Avoid

To

floating Avoid Avoid

Some inappropriate explicit casts are:

• In C99, the result of a cast of assignment to _Bool is always 0 or 1. This result is
not necessarily the case when casting to another type which is defined as essentially
Boolean.

• A cast to an essential enum type may result in a value that does not lie within the set
of enumeration constants for that type.

• A cast from essential Boolean to any other type is unlikely to be meaningful.
• Converting between floating and character types is not meaningful as there is no

precise mapping between the two representations.

Some acceptable explicit casts are:

5-144

 MISRA C:2012 Rule 10.5

• To change the type in which a subsequent arithmetic operation is performed.
• To truncate a value deliberately.
• To make a type conversion explicit in the interests of clarity.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report

The value of an expression should not be cast to an inappropriate essential type.

Check Information
Group: The Essential Type Model
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.8

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-145

5 MISRA C 2012

MISRA C:2012 Rule 10.6
The value of a composite expression shall not be assigned to an object with wider
essential type

Description

Rule Definition

The value of a composite expression shall not be assigned to an object with wider essential
type.

Rationale

A composite expression is a nonconstant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

If you assign the result of a composite expression to a larger type, the implicit conversion
can result in loss of value, sign, precision, or layout.

For information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report

The composite expression is assigned to an object with a wider essential type.

Check Information
Group: The Essential Type Model
Category: Required

5-146

 MISRA C:2012 Rule 10.6

AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-147

5 MISRA C 2012

MISRA C:2012 Rule 10.7
If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed then the other operand shall not have wider
essential type

Description

Rule Definition

If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed, then the other operand shall not have wider
essential type.

Rationale

A composite expression is a nonconstant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Restricting implicit conversion on composite expressions mean that sequences of
arithmetic operations within expressions must use the same essential type. This
restriction reduces confusion and avoids loss of value, sign, precision, or layout. However,
this rule does not imply that all operands in an expression are of the same essential type.

For information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report

• The right operand shall not have wider essential type than the left operand which is a
composite expression.

5-148

 MISRA C:2012 Rule 10.7

• The left operand shall not have wider essential type than the right operand which is a
composite expression.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-149

5 MISRA C 2012

MISRA C:2012 Rule 10.8

The value of a composite expression shall not be cast to a different essential type
category or a wider essential type

Description

Rule Definition

The value of a composite expression shall not be cast to a different essential type category
or a wider essential type.

Rationale

A composite expression is a non-constant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Casting to a wider type is not permitted because the result may vary between
implementations. Consider this expression:

(uint32_t) (u16a +u16b);

On a 16-bit machine the addition is performed in 16 bits. The result is wrapped before it
is cast to 32 bits. On a 32-bit machine, the addition takes place in 32 bits and preserves
high-order bits that are lost on a 16-bit machine. Casting to a narrower type with the
same essential type category is acceptable as the explicit truncation of the results always
leads to the same loss of information.

For information on essential types, see MISRA C:2012 Rule 10.1.

5-150

 MISRA C:2012 Rule 10.8

Message in Report

• The value of a composite expression shall not be cast to a different essential type
category.

• The value of a composite expression shall not be cast to a wider essential type.

Examples

Casting to Different or Wider Essential Type

extern unsigned short ru16a, u16a, u16b;

extern unsigned int u32a, ru32a;

extern signed int s32a, s32b;

void foo(void)

{

 ru16a = (unsigned short) (u32a + u32a);/* Compliant */

 ru16a += (unsigned short) s32a + s32b;

 /* Noncompliant - different essential type */

 ru16a += (unsigned short) s32a; /* Compliant - s32a is not composite */

 ru32a = (unsigned int) (u16a + u16b); /* Noncompliant - wider essential type */

}

In this example, rule 10.8 is violated in the following cases:

• s32a and s32b are essentially signed variables. However, the result (s32a +
s32b) is cast to an essentially unsigned type.

• u16a and u16b are essentially unsigned short variables. However, the result
(s32a + s32b) is cast to a wider essential type, unsigned int.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.5

5-151

5 MISRA C 2012

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-152

 MISRA C:2012 Rule 11.1

MISRA C:2012 Rule 11.1
Conversions shall not be performed between a pointer to a function and any other type

Description

Rule Definition

Conversions shall not be performed between a pointer to a function and any other type.

Rationale

The rule forbids the following two conversions:

• Conversion from a function pointer to any other type. This conversion causes
undefined behavior.

• Conversion from a function pointer to another function pointer, if the function
pointers have different argument and return types.

The conversion is forbidden because calling a function through a pointer with
incompatible type results in undefined behavior.

Polyspace Specification

Polyspace considers both explicit and implicit casts when checking this rule. However,
casts from NULL or (void*)0 do not violate this rule.

Message in Report

Conversions shall not be performed between a pointer to a function and any other type.

Examples

Cast between two function pointers

typedef void (*fp16) (short n);

5-153

5 MISRA C 2012

typedef void (*fp32) (int n);

#include <stdlib.h> /* To obtain macro NULL */

void func(void) { /* Exception 1 - Can convert a null pointer

 * constant into a pointer to a function */

 fp16 fp1 = NULL; /* Compliant - exception */

 fp16 fp2 = (fp16) fp1; /* Compliant */

 fp32 fp3 = (fp32) fp1; /* Non-compliant */

 if (fp2 != NULL) {} /* Compliant - exception */

 fp16 fp4 = (fp16) 0x8000; /* Non-compliant - integer to

 * function pointer */}

In this example, the rule is violated when:

• The pointer fp1 of type fp16 is cast to type fp32. The function pointer types fp16
and fp32 have different argument types.

• An integer is cast to type fp16.

The rule is not violated when function pointers fp1 and fp2 are cast to NULL.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-154

 MISRA C:2012 Rule 11.2

MISRA C:2012 Rule 11.2
Conversions shall not be performed between a pointer to an incomplete type and any
other type

Description

Rule Definition

Conversions shall not be performed between a pointer to an incomplete type and any other
type.

Rationale

An incomplete type is a type that does not contain sufficient information to determine its
size. For example, the statement struct s; describes an incomplete type because the
fields of s are not defined. The size of a variable of type s cannot be determined.

Conversions to or from a pointer to an incomplete type result in undefined behavior.
Typically, a pointer to an incomplete type is used to hide the full representation of an
object. This encapsulation is broken if another pointer is implicitly or explicitly cast to
such a pointer.

Message in Report

Conversions shall not be performed between a pointer to an incomplete type and any
other type.

Examples

Casts from incomplete type

struct s *sp;

struct t *tp;

short *ip;

5-155

5 MISRA C 2012

struct ct *ctp1;

struct ct *ctp2;

void foo(void) {

 ip = (short *) sp; /* Non-compliant */

 sp = (struct s *) 1234; /* Non-compliant */

 tp = (struct t *) sp; /* Non-compliant */

 ctp1 = (struct ct *) ctp2; /* Compliant */

 /* You can convert a null pointer constant to

 * a pointer to an incomplete type */

 sp = NULL; /* Compliant - exception */

 /* A pointer to an incomplete type may be converted into void */

 struct s *f(void);

 (void) f(); /* Compliant - exception */

}

In this example, types s, t and ct are incomplete. The rule is violated when:

• The variable sp with an incomplete type is cast to a basic type.
• The variable sp with an incomplete type is cast to a different incomplete type t.

The rule is not violated when:

• The variable ctp2 with an incomplete type is cast to the same incomplete type.
• The NULL pointer is cast to the variable sp with an incomplete type.
• The return value of f with incomplete type is cast to void.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.5

5-156

 MISRA C:2012 Rule 11.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-157

5 MISRA C 2012

MISRA C:2012 Rule 11.3
A cast shall not be performed between a pointer to object type and a pointer to a different
object type

Description

Rule Definition

A cast shall not be performed between a pointer to object type and a pointer to a different
object type.

Rationale

If a pointer to an object is cast into a pointer to a different object, the resulting pointer
can be incorrectly aligned. The incorrect alignment causes undefined behavior.

Even if the conversion produces a pointer that is correctly aligned, the behavior can be
undefined if the pointer is used to access an object.

Exception: You can convert a pointer to object type into a pointer to one of the following
types:

• char

• signed char

• unsigned char

Message in Report

A cast shall not be performed between a pointer to object type and a pointer to a different
object type.

Examples

Noncompliant: Cast to Pointer Pointing to Object of Wider Type

signed char *p1;

5-158

 MISRA C:2012 Rule 11.3

unsigned int *p2;

void foo(void){

 p2 = (unsigned int *) p1; /* Non-compliant */

}

In this example, p1 can point to a signed char object. However, p1 is cast to a pointer
that points to an object of wider type, unsigned int.

Noncompliant: Cast to Pointer Pointing to Object of Narrower Type

extern unsigned int read_value (void);

extern void display (unsigned int n);

void foo (void){

 unsigned int u = read_value ();

 unsigned short *hi_p = (unsigned short *) &u; /* Non-compliant */

 *hi_p = 0;

 display (u);

}

In this example, u is an unsigned int variable. &u is cast to a pointer that points to an
object of narrower type, unsigned short.

On a big-endian machine, the statement *hi_p = 0 attempts to clear the high bits of
the memory location that &u points to. But, from the result of display(u), you might
find that the high bits have not been cleared.

Compliant: Cast Adding a Type Qualifier

const short *p;

const volatile short *q;

void foo (void){

 q = (const volatile short *) p; /* Compliant */

}

In this example, both p and q can point to short objects. The cast between them adds a
volatile qualifier only and is therefore compliant.

Check Information
Group: Pointer Type Conversions

5-159

5 MISRA C 2012

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.5 | MISRA C:2012 Rule 11.8

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-160

 MISRA C:2012 Rule 11.4

MISRA C:2012 Rule 11.4
A conversion should not be performed between a pointer to object and an integer type

Description

Rule Definition

A conversion should not be performed between a pointer to object and an integer type.

Rationale

Conversion between integers and pointers can cause errors or undefined behavior.

• If an integer is cast to a pointer, the resulting pointer can be incorrectly aligned. The
incorrect alignment causes undefined behavior.

• If a pointer is cast to an integer, the resulting value can be outside the allowed range
for the integer type.

Polyspace Specification

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report

A conversion should not be performed between a pointer to object and an integer type.

Examples

Casts between pointer and integer

#include <stdbool.h>

typedef unsigned char uint8_t;

5-161

5 MISRA C 2012

typedef char char_t;

typedef unsigned short uint16_t;

typedef signed int int32_t;

typedef _Bool bool_t;

uint8_t *PORTA = (uint8_t *) 0x0002; /* Non-compliant */

void foo(void) {

 char_t c = 1;

 char_t *pc = &c; /* Compliant */

 uint16_t ui16 = 7U;

 uint16_t *pui16 = &ui16; /* Compliant */

 pui16 = (uint16_t *) ui16; /* Non-compliant */

 uint16_t *p;

 int32_t addr = (int32_t) p; /* Non-compliant */

 bool_t b = (bool_t) p; /* Non-compliant */

 enum etag { A, B } e = (enum etag) p; /* Non-compliant */

}

In this example, the rule is violated when:

• The integer 0x0002 is cast to a pointer.

If the integer defines an absolute address, it is more common to assign the address
to a pointer in a header file. To avoid the assignment being flagged, you can then
exclude headers files from coding rules checking. For more information, see Do not
generate results for (-do-not-generate-results-for).

• The pointer p is cast to integer types such as int32_t, bool_t or enum etag.

The rule is not violated when the address &ui16 is assigned to a pointer.

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

5-162

 MISRA C:2012 Rule 11.4

See Also
MISRA C:2012 Rule 11.3 | MISRA C:2012 Rule 11.7 | MISRA C:2012 Rule 11.9

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-163

5 MISRA C 2012

MISRA C:2012 Rule 11.5
A conversion should not be performed from pointer to void into pointer to object

Description

Rule Definition

A conversion should not be performed from pointer to void into pointer to object.

Rationale

If a pointer to void is cast into a pointer to an object, the resulting pointer can be
incorrectly aligned. The incorrect alignment causes undefined behavior. However, such a
cast can sometimes be necessary, for example, when using memory allocation functions.

Polyspace Specification

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report

A conversion should not be performed from pointer to void into pointer to object.

Examples

Cast from Pointer to void

void foo(void) {

 unsigned int u32a = 0;

 unsigned int *p32 = &u32a;

 void *p;

 unsigned int *p16;

5-164

 MISRA C:2012 Rule 11.5

 p = p32; /* Compliant - pointer to uint32_t

 * into pointer to void */

 p16 = p; /* Non-compliant */

 p = (void *) p16; /* Compliant */

 p32 = (unsigned int *) p; /* Non-compliant */

}

In this example, the rule is violated when the pointer p of type void* is cast to pointers
to other types.

The rule is not violated when p16 and p32, which are pointers to non-void types, are
cast to void*.

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 11.2 | MISRA C:2012 Rule 11.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-165

5 MISRA C 2012

MISRA C:2012 Rule 11.6
A cast shall not be performed between pointer to void and an arithmetic type

Description

Rule Definition

A cast shall not be performed between pointer to void and an arithmetic type.

Rationale

Conversion between integer types and pointers to void can cause errors or undefined
behavior.

• If an integer type is cast to a pointer, the resulting pointer can be incorrectly aligned.
The incorrect alignment causes undefined behavior.

• If a pointer is cast to an arithmetic type, the resulting value can be outside the
allowed range for the type.

Conversion between non-integer arithmetic types and pointers to void is undefined.

Polyspace Specification

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report

A cast shall not be performed between pointer to void and an arithmetic type.

Examples

Casts Between Pointer to void and Arithmetic Types

void foo(void) {

5-166

 MISRA C:2012 Rule 11.6

 void *p;

 unsigned int u;

 unsigned short r;

 p = (void *) 0x1234u; /* Non-compliant - undefined */

 u = (unsigned int) p; /* Non-compliant - undefined */

 p = (void *) 0; /* Compliant - Exception */

}

In this example, p is a pointer to void. The rule is violated when:

• An integer value is cast to p.
• p is cast to an unsigned int type.

The rule is not violated if an integer constant with value 0 is cast to a pointer to void.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-167

5 MISRA C 2012

MISRA C:2012 Rule 11.7
A cast shall not be performed between pointer to object and a non-integer arithmetic type

Description

Rule Definition

A cast shall not be performed between pointer to object and a non-integer arithmetic type.

Rationale

This rule covers types that are essentially Boolean, character, enum or floating.

• If an essentially Boolean, character or enum variable is cast to a pointer, the resulting
pointer can be incorrectly aligned. The incorrect alignment causes undefined
behavior. If a pointer is cast to one of those types, the resulting value can be outside
the allowed range for the type.

• Casts to or from a pointer to a floating type results in undefined behavior.

Message in Report

A cast shall not be performed between pointer to object and a non-integer arithmetic
type.

Examples

Casts from Pointer to Non-Integer Arithmetic Types

int foo(void) {

 short *p;

 float f;

 long *l;

 f = (float) p; /* Non-compliant */

5-168

 MISRA C:2012 Rule 11.7

 p = (short *) f; /* Non-compliant */

 l = (long *) p; /* Compliant */

}

In this example, the rule is violated when:

• The pointer p is cast to float.
• A float variable is cast to a pointer to short.

The rule is not violated when the pointer p is cast to long*.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-169

5 MISRA C 2012

MISRA C:2012 Rule 11.8
A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer

Description

Rule Definition

A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer.

Rationale

This rule forbids:

• Casts from a pointer to a const object to a pointer that does not point to a const
object.

• Casts from a pointer to a volatile object to a pointer that does not point to a
volatile object.

Such casts violate type qualification. For example, the const qualifier indicates the read-
only status of an object. If a cast removes the qualifier, the object is no longer read-only.

Polyspace Specification

Polyspace flags both implicit and explicit conversions that violate this rule.

Message in Report

A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer.

Check Information
Group: Pointer Type Conversions

5-170

 MISRA C:2012 Rule 11.8

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-171

5 MISRA C 2012

MISRA C:2012 Rule 11.9
The macro NULL shall be the only permitted form of integer null pointer constant

Description

Rule Definition

The macro NULL shall be the only permitted form of integer null pointer constant.

Rationale

The following expressions require the use of a null pointer constant:

• Assignment to a pointer
• The == or != operation, where one operand is a pointer
• The ?: operation, where one of the operands on either side of : is a pointer

Using NULL rather than 0 makes it clear that a null pointer constant was intended.

Message in Report

The macro NULL shall be the only permitted form of integer null pointer constant.

Examples

Using 0 for Pointer Assignments and Comparisons

void main(void) {

 int *p1 = 0; /* Non-compliant */

 int *p2 = (void *) 0; /* Compliant */

#define MY_NULL_1 0

#define MY_NULL_2 (void *) 0

5-172

 MISRA C:2012 Rule 11.9

 if (p1 == MY_NULL_1) /* Non-compliant */

 { }

 if (p2 == MY_NULL_2) /* Compliant */

 { }

}

In this example, the rule is violated when the constant 0 is used instead of (void*) 0
for pointer assignments and comparisons.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-173

5 MISRA C 2012

MISRA C:2012 Rule 12.1
The precedence of operators within expressions should be made explicit

Description

Rule Definition

The precedence of operators within expressions should be made explicit.

Rationale

The C language has a large number of operators and their precedence is not intuitive.
Inexperienced programmers can easily make mistakes. Remove any ambiguity by using
parentheses to explicitly define operator precedence.

The following table list the MISRA C definition of operator precedence for this rule.

Description Operator and Operand Precedence

Primary identifier, constant, string literal, (expression) 16
Postfix [] () (function call) . -> ++(post-increment) --(post-

decrement) () {}(C99: compound literals)
15

Unary ++(post-increment) --(post-decrement) & * + - ~ !
sizeof defined (preprocessor)

14

Cast () 13
Multiplicative * / % 12
Additive + - 11
Bitwise shift << >> 10
Relational <> <= >= 9
Equality == != 8
Bitwise AND & 7
Bitwise XOR ^ 6
Bitwise OR | 5

5-174

 MISRA C:2012 Rule 12.1

Description Operator and Operand Precedence

Logical AND && 4
Logical OR || 3
Conditional ?: 2
Assignment = *= /= += -= <<= >>= &= ^= |= 1
Comma , 0

Message in Report

Operand of logical %s is not a primary expression. The precedence of operators within
expressions should be made explicit.

Examples

Ambiguous Precedence in Multi-Operation Expressions

int a, b, c, d, x;

void foo(void) {

 x = sizeof a + b; /* Non-compliant - MISRA-12.1 */

 x = a == b ? a : a - b; /* Non-compliant - MISRA-12.1 */

 x = a << b + c ; /* Non-compliant - MISRA-12.1 */

 if (a || b && c) { } /* Non-compliant - MISRA-12.1 */

 if ((a>x) && (b>x) || (c>x)) { } /* Non-compliant - MISRA-12.1 */

}

This example shows various violations of MISRA rule 12.1. In each violation, if you do
not know the order of operations, the code could execute unexpectedly.

Correction — Clarify With Parentheses

To comply with this MISRA rule, add parentheses around individual operations in the
expressions. One possible solution is shown here.

5-175

5 MISRA C 2012

int a, b, c, d, x;

void foo(void) {

 x = sizeof(a) + b;

 x = (a == b) ? a : (a - b);

 x = a << (b + c);

 if ((a || b) && c) { }

 if (((a>x) && (b>x)) || (c>x)) { }

}

Ambiguous Precedence In Preprocessing Expressions

if defined X && X + Y > Z /* Non-compliant - MISRA-12.1 */

endif

if ! defined X && defined Y /* Non-compliant - MISRA-12.1 */

endif

In this example, two violations of MISRA rule 12.1 are shown in preprocessing code.
In each violation, if you do not know the correct order of operations, the results can be
unexpected and cause problems.

Correction — Clarify with Parentheses

To comply with this MISRA rule, add parentheses around individual operations in the
expressions. One possible solution is shown here.

if defined (X) && ((X + Y) > Z)

endif

if ! defined (X) && defined (Y)

endif

Compliant Expressions Without Parentheses

int a, b, c, x;

struct {int a; } s, *ps, *pp[2];

void foo(void) {

5-176

 MISRA C:2012 Rule 12.1

 ps = &s

 pp[i]-> a; /* Compliant - no need to write (pp[i])->a */

 ps++; / Compliant - no need to write *(p++) */

 x = f (a + b, c); /* Compliant - no need to write f ((a+b),c) */

 x = a, b; /* Compliant - parsed as (x = a), b */

 if (a && b && c){ /* Compliant - all operators have

 * the same precedence */

}

In this example, the expressions shown have multiple operations. However, these
expressions are compliant because operator precedence is already clear.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.2 | MISRA C:2012 Rule 12.3 | MISRA C:2012 Rule 12.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-177

5 MISRA C 2012

MISRA C:2012 Rule 12.2
The right hand operand of a shift operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand

Description

Rule Definition

The right hand operand of a shift operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand.

Rationale

Consider the following statement:

var = abc << num;

If abc is a 16-bit integer, then num must be in the range 0–15, (nonnegative and less than
16). If num is negative or greater than 16, then the shift behavior is undefined.

Polyspace Specification

In Polyspace, the numbers that are manipulated in preprocessing directives are 64 bits
wide. The valid shift range is between 0 and 63. When bitfields are within a complex
expression, Polyspace extends this check onto the bitfield field width or the width of the
base type.

Message in Report

• Shift amount is bigger than size.
• Shift amount is negative.
• The right operand of a shift operator shall lie in the range zero to one less than the

width in bits of the essential type of the left operand.

Check Information
Group: Expressions

5-178

 MISRA C:2012 Rule 12.2

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-179

5 MISRA C 2012

MISRA C:2012 Rule 12.3
The comma operator should not be used

Description

Rule Definition

The comma operator should not be used.

Rationale

The comma operator can be detrimental to readability. You can often write the same code
in another form.

Message in Report

The comma operator should not be used.

Examples

Comma Usage in C Code

typedef signed int abc, xyz, jkl;

static void func1 (abc, xyz, jkl); /* Compliant - case 1 */

int foo(void)

{

 volatile int rd = 1; /* Compliant - case 2*/

 int var=0, foo=0, k=0, n=2, p, t[10]; /* Compliant - case 3*/

 int abc = 0, xyz = abc + 1; /* Compliant - case 4*/

 int jkl = (abc + xyz, abc + xyz); /* Not compliant - case 1*/

 var = 1, foo += var, kkk = 3; /* Not compliant - case 2*/

5-180

 MISRA C:2012 Rule 12.3

 var = (kkk = 1, foo = 2); /* Not compliant - case 3*/

 for (var = 0, ptr = &t[0]; var < num; ++var, ++ptr){}

 /* Not compliant - case 4*/

 if ((abc,xyz)<0) { return 1; } /* Not compliant - case 5*/

}

In this example, the code shows various uses of commas in C code.

Noncompliant Cases

Case Reason for noncompliance

1 When reading the code, it is not immediately obvious what jkl
is initialized to. For example, you could infer that jkl has a
value abc+xyz, (abc+xyz)*(abc+xyz), f((abc+xyz),(abc
+xyz)), and so on.

2 When reading the code, it is not immediately obvious whether
foo has a value 0 or 1 after the statement.

3 When reading the code, it is not immediately obvious what value
is assigned to var.

4 When reading the code, it is not immediately obvious which
values control the for loop.

5 When reading the code, it is not immediately obvious whether
the if statement depends on abc, xyz, or both.

Compliant Cases

Case Reason for compliance

1 Using commas to call functions with variables is allowed.
2 Comma operator is not used.
3 & 4 When using the comma for initialization, the variables and their

values are immediately obvious.

Check Information
Group: Expressions

5-181

5 MISRA C 2012

Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-182

 MISRA C:2012 Rule 12.4

MISRA C:2012 Rule 12.4
Evaluation of constant expressions should not lead to unsigned integer wrap-around

Description

Rule Definition

Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Rationale

Unsigned integer expressions do not strictly overflow, but instead wraparound. Although
there may be good reasons to use modulo arithmetic at run time, intentional use at
compile time is less likely.

Message in Report

Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

5-183

5 MISRA C 2012

• “Software Quality Objective Subsets (C:2012)”

5-184

 MISRA C:2012 Rule 13.1

MISRA C:2012 Rule 13.1
Initializer lists shall not contain persistent side effects

Description

Rule Definition

Initializer lists shall not contain persistent side effects.

Rationale

C99 permits initializer lists with expressions that can be evaluated only at run-time.
However, the order in which elements of the list are evaluated is not defined. If one
element of the list modifies the value of a variable which is used in another element, the
ambiguity in order of evaluation causes undefined values. Therefore, this rule requires
that expressions occurring in an initializer list cannot modify the variables used in them.

Message in Report

Initializer lists shall not contain persistent side effects.

Examples

Initializers with Persistent Side Effect

volatile int v;

int x;

int y;

void f(void) {

 int arr[2] = {x+y,x-y}; /* Compliant */

 int arr2[2] = {v,0}; /* Non-compliant */

 int arr3[2] = {x++,y}; /* Non-compliant */

}

5-185

5 MISRA C 2012

In this example, the rule is not violated in the first initialization because the initializer
does not modify either x or y. The rule is violated in the other initializations.

• In the second initialization, because v is volatile, the initializer can modify v.
• In the third initialization, the initializer modifies the variable x.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 13.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-186

 MISRA C:2012 Rule 13.2

MISRA C:2012 Rule 13.2
The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders

Description

Rule Definition

The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders.

Rationale

An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and
written.

• The expression allows more than one order of evaluation.

Therefore, this rule forbids expressions where a variable is modified more than once and
can cause different results under different orders of evaluation.

Message in Report

The value of 'XX' depends on the order of evaluation. The value of volatile 'XX' depends
on the order of evaluation because of multiple accesses.

Examples

Variable Modified More Than Once in Expression

int a[10], b[10];

#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

void main () {

5-187

5 MISRA C 2012

 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */

 COPY_ELEMENT (i++); /* Non-compliant */

}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++
occurs twice and the order of evaluation of the two expressions is unspecified.

Variable Modified and Used in Multiple Function Arguments

void f (unsigned int param1, unsigned int param2) {}

void main () {

 unsigned int i=0;

 f (i++, i); /* Non-compliant */

}

In this example, the rule is violated because it is unspecified whether the operation i
++ occurs before or after the second argument is passed to f. The call f(i++,i) can
translate to either f(0,0) or f(0,1).

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.9 | MISRA C:2012 Rule 13.1 | MISRA C:2012 Rule 13.3 |
MISRA C:2012 Rule 13.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-188

 MISRA C:2012 Rule 13.2

Introduced in R2014b

5-189

5 MISRA C 2012

MISRA C:2012 Rule 13.3
A full expression containing an increment (++) or decrement (--) operator should have
no other potential side effects other than that caused by the increment or decrement
operator

Description

Rule Definition

A full expression containing an increment (++) or decrement (--) operator should have no
other potential side effects other than that caused by the increment or decrement operator.

Rationale

The rule is violated if the following happens in the same line of code:

• The increment or decrement operator acts on a variable.
• Another read or write operation is performed on the variable.

For example, the line y=x++ violates this rule. The ++ and = operator both act on x.

Although the operator precedence rules determine the order of evaluation, placing the ++
and another operator in the same line can reduce the readability of the code.

Message in Report

A full expression containing an increment (++) or decrement (--) operator should have
no other potential side effects other than that caused by the increment or decrement
operator.

Examples

Increment Operator Used in Expression with Other Side Effects

int input(void);

5-190

 MISRA C:2012 Rule 13.3

int choice(void);

int operation(int, int);

int func() {

 int x = input(), y = input(), res;

 int ch = choice();

 if (choice == -1)

 return(x++);

 if (choice == 0) {

 res = x++ + y++;

 return(res); /* Non-compliant */

 }

 else if (choice == 1) {

 x++; /* Compliant */

 y++; /* Compliant */

 return (x+y);

 }

 else {

 res = operation(x++,y);

 return(res); /* Non-compliant */

 }

}

In this example, the rule is violated when the expressions containing the ++ operator
have side effects other than that caused by the operator. For example, in the expression
return(x++), the other side-effect is the return operation.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 13.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

5-191

5 MISRA C 2012

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-192

 MISRA C:2012 Rule 13.4

MISRA C:2012 Rule 13.4
The result of an assignment operator should not be used

Description

Rule Definition

The result of an assignment operator should not be used.

Rationale

The rule is violated if the following happens in the same line of code:

• The assignment operator acts on a variable.
• Another read or operation is performed on the result of the assignment.

For example, the line a[x]=a[x=y]; violates this rule. The [] operator acts on the
result of the assignment x=y.

Message in Report

The result of an assignment operator should not be used.

Examples

Result of Assignment Used

int x, y, b, c, d;

int a[10];

unsigned int bool_var, false=0, true=1;

int foo(void) {

 x = y; /* Compliant - x is not used */

 a[x] = a[x = y]; /* Non-compliant - Value of x=y is used */

5-193

5 MISRA C 2012

 if (bool_var = false) {}

 /* Non-compliant - bool_var=false is used */

 if (bool_var == false) {} /* Compliant */

 if ((0u == 0u) || (bool_var = true)) {}

 /* Non-compliant - even though (bool_var=true) is not evaluated */

 if ((x = f ()) != 0) {}

 /* Non-compliant - value of x=f() is used */

 a[b += c] = a[b];

 /* Non-compliant - value of b += c is used */

 b = c = d = 0; /* Non-compliant - value of d=0 and c=d=0 are used */

}

In this example, the rule is violated when the result of an assignment is used.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 13.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-194

 MISRA C:2012 Rule 13.5

MISRA C:2012 Rule 13.5
The right hand operand of a logical && or ||operator shall not contain persistent side
effects

Description

Rule Definition

The right hand operand of a logical && or ||operator shall not contain persistent side
effects.

Rationale

The right operand of an || operator is not evaluated if the left operand is true. The right
operand of an && operator is not evaluated if the left operand is false. In these cases, if
the right operand modifies the value of a variable, the modification does not take place.
Following the operation, if you expect a modified value of the variable, the modification
might not always happen.

Polyspace Specification

• For this rule, Polyspace considers that all function calls have a persistent side effect.
• If the right operand is a volatile variable, Polyspace does not flag this as a rule

violation.

Message in Report

The right hand operand of a && operator shall not contain side effects. The right hand
operand of a || operator shall not contain side effects.

Examples

Right Operand of Logical Operator with Persistent Side Effects

int check (int arg) {

5-195

5 MISRA C 2012

 static int count;

 if(arg > 0) {

 count++; /* Persistent side effect */

 return 1;

 }

 else

 return 0;

}

int getSwitch(void);

int getVal(void);

void main(void) {

 int val = getVal();

 int mySwitch = getSwitch();

 int checkResult;

 if(mySwitch && check(val)) { /* Non-compliant */

 }

 checkResult = check(val);

 if(checkResult && mySwitch) { /* Compliant */

 }

 if(check(val) && mySwitch) { /* Compliant */

 }

}

In this example, the rule is violated when the right operand of the && operation contains
a function call. The function call has a persistent side effect because the static variable
count is modified in the function body. Depending on mySwitch, this modification might
or might not happen.

The rule is not violated when the left operand contains a function call. Alternatively,
to avoid the rule violation, assign the result of the function call to a variable. Use this
variable in the logical operation in place of the function call.

In this example, the function call has the side effect of modifying a static variable.
Polyspace flags all function calls when used on the right-hand side of a logical && or
|| operator, even when the function does not have a side effect. Manually inspect your
function body to see if it has side effects. If the function does not have side effects, add
a comment and justification in your Polyspace result explaining why you retained your
code.

5-196

 MISRA C:2012 Rule 13.5

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-197

5 MISRA C 2012

MISRA C:2012 Rule 13.6
The operand of the sizeof operator shall not contain any expression which has potential
side effects

Description

Rule Definition

The operand of the sizeof operator shall not contain any expression which has potential
side effects.

Rationale

The argument of a sizeof operator is usually not evaluated at run time. If the argument
is an expression, you might wrongly expect that the expression is evaluated.

Polyspace Specification

The rule is not violated if the argument is a volatile variable.

Message in Report

The operand of the sizeof operator shall not contain any expression which has potential
side effects.

Examples

Expressions in sizeof Operator

#include <stddef.h>

int x;

int y[40];

struct S {

 int a;

5-198

 MISRA C:2012 Rule 13.6

 int b;

};

struct S myStruct;

void main() {

 size_t sizeOfType;

 sizeOfType = sizeof(x); /* Compliant */

 sizeOfType = sizeof(y); /* Compliant */

 sizeOfType = sizeof(myStruct); /* Compliant */

 sizeOfType = sizeof(x++); /* Non-compliant */

}

In this example, the rule is violated when the expression x++ is used as argument of
sizeof operator.

Check Information
Group: Side Effects
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 18.8

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-199

5 MISRA C 2012

MISRA C:2012 Rule 14.1
A loop counter shall not have essentially floating type

Description

Rule Definition

A loop counter shall not have essentially floating type.

Rationale

When using a floating-point loop counter, accumulation of rounding errors can result in
a mismatch between the expected and actual number of iterations. This rounding error
can happen when a loop step that is not a power of the floating point radix is rounded to
a value that can be represented by a float.

Even if a loop with a floating-point loop counter appears to behave correctly on one
implementation, it can give a different number of iteration on another implementation.

Polyspace Specification

If the for index is a variable symbol, Polyspace checks that it is not a float.

Message in Report

A loop counter shall not have essentially floating type.

Examples

for Loop Counters

int main(void){

 unsigned int counter = 0u;

 int result = 0;

5-200

 MISRA C:2012 Rule 14.1

 float foo;

 // Float loop counters

 for(float foo = 0.0f; foo < 1.0f; foo +=0.001f){

 /* Non-compliant - counter = 1000 at the end of the loop */

 ++counter;

 }

 float fff = 0.0f;

 for(fff = 0.0f; fff <12.0f; fff += 1.0f){ /* Non-compliant*/

 result++;

 }

 // Integer loop count

 for(unsigned int count = 0u; count < 1000u; ++count){ /* Compliant */

 foo = (float) count * 0.001f;

 }

}

In this example, the three for loops show three different loop counters. The first and
second for loops use float variables as loop counters, and therefore are not compliant.
The third loop uses the integer count as the loop counter. Even though count is used
as a float inside the loop, the variable remains an integer when acting as the loop index.
Therefore, this for loop is compliant.

while Loop Counters

int main(void){

 unsigned int u32a;

 float foo;

 foo = 0.0f;

 while (foo < 1.0f){

 foo += 0.001f; /* Non-compliant - foo used as a loop counter */

 }

 foo = read_float32();

 do{

 u32a = read_u32();

 }while(((float)u32a - foo) > 10.0f);

 /* Compliant - foo doesn't change in the loop */

 /* so cannot be a counter */

 return 1;

5-201

5 MISRA C 2012

}

This example shows two while loops both of which use foo in the while-loop conditions.

The first while loop uses foo in the condition and inside the loop. Because foo changes,
floating-point rounding errors can cause unexpected behavior.

The second while loop does not use foo inside the loop, but does use foo inside the
while-condition. So foo is not the loop counter. The integer u32a is the loop counter
because it changes inside the loop and is part of the while condition. Because u32a is an
integer, the rounding error issue is not a concern, making this while loop compliant.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 14.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-202

 MISRA C:2012 Rule 14.2

MISRA C:2012 Rule 14.2
A for loop shall be well-formed

Description

Rule Definition

A for loop shall be well-formed.

Rationale

The for statement provides a general-purpose looping facility. Using a restricted form of
loop makes code easier to review and to analyze.

Polyspace Specification

Polyspace checks that:

• The for loop index (V) is a variable symbol.
• V is the last assigned variable in the first expression (if present).
• If the first expression exists, it contains an assignment of V.
• If the second expression exists, it is a comparison of V.
• If the third expression exists, it is an assignment of V.
• There are no direct assignments of the for loop index.

Message in Report

• 1st expression should be an assignment. The following kinds of for loops are allowed:

• all three expressions shall be present;
• the 2nd and 3rd expressions shall be present with prior initialization of the loop

counter;
• all three expressions shall be empty for a deliberate infinite loop.

• 3rd expression should be an assignment of a loop counter.

5-203

5 MISRA C 2012

• 3rd expression : assigned variable should be the loop counter (counter).
• 3rd expression should be an assignment of loop counter (counter) only.
• 2nd expression should contain a comparison with loop counter (counter).
• Loop counter (counter) should not be modified in the body of the loop.
• Bad type for loop counter (counter).

Examples

Altering the Loop Counter Inside the Loop

void foo(void){

 for(short index=0; index < 5; index++){ /* Non-compliant */

 index = index + 3; /* Altering the loop counter */

 }

}

In this example, the loop counter index changes inside the for loop. It is hard to
determine when the loop terminates.

Correction — Use Another Variable to Terminate Early

One possible correction is to use an extra flag to terminate the loop early.

In this correction, the second clause of the for loop depends on the counter value, index
< 5, and upon an additional flag, !flag. With the additional flag, the for loop definition
and counter remain readable, and you can escape the loop early.

#define FALSE 0

#define TRUE 1

void foo(void){

 int flag = FALSE;

 for(short index=0; (index < 5) && !flag; index++){ /* Compliant */

 if((index % 4) == 0){

 flag = TRUE; /* allows early termination of loop */

 }

 }

5-204

 MISRA C:2012 Rule 14.2

}

for Loops With Empty Clauses

void foo(void)

 for(short index = 0; ; index++) {} /* Non-compliant */

 for(short index = 0; index < 10;) {} /* Non-compliant */

 short index;

 for(; index < 10;) {} /* Non-compliant */

 for(; index < 10; i++) {} /* Compliant */

 for(;;){}

 /* Compliant - Exception all three clauses can be empty */

}

This example shows for loops definitions with a variety of missing clauses. To be
compliant, initialize the first clause variable before the for loop (line 9). However, you
cannot have a for loop without the second or third clause.

The one exception is a for loop with all three clauses empty, so as to allow for infinite
loops.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 14.1 | MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule 14.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

5-205

5 MISRA C 2012

• “Software Quality Objective Subsets (C:2012)”

5-206

 MISRA C:2012 Rule 14.3

MISRA C:2012 Rule 14.3
Controlling expressions shall not be invariant

Description

Rule Definition

Controlling expressions shall not be invariant.

Rationale

If the controlling expression, for example an if condition, has a constant value, the non-
changing value can point to a programming error.

Polyspace Specification

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Polyspace Bug Finder flags some violations of MISRA C 14.3 through the Dead code
and Useless if checkers.

Polyspace Code Prover does not use gray code to flag MISRA C 14.3 violations.

Message in Report

• Boolean operations whose results are invariant shall not be permitted.
• Expression is always true.
• Boolean operations whose results are invariant shall not be permitted.
• Expression is always false.
• Controlling expressions shall not be invariant.

Check Information
Group: Control Statement Expressions

5-207

5 MISRA C 2012

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 14.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-208

 MISRA C:2012 Rule 14.4

MISRA C:2012 Rule 14.4
The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type

Description

Rule Definition

The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type

Rationale

Strong typing requires the controlling expression on an if statement or iteration
statement to have essentially Boolean type.

Polyspace Specification

Polyspace does not flag integer constants, for example if(2).

If your configuration includes the option -boolean-types, the number of warnings can
increase or decrease.

Message in Report

The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type.

Examples

Controlling Expression in if, while, and for

#include <stdbool.h>

#include <stdlib.h>

5-209

5 MISRA C 2012

#define TRUE = 1

typedef _Bool bool_t;

extern bool_t flag;

void foo(void){

 int *p = 1;

 int *q = 0;

 int i = 0;

 while(p){} /* Non-compliant - p is a pointer */

 while(q != NULL){} /* Compliant */

 while(TRUE){} /* Compliant */

 while(flag){} /* Compliant */

 if(i){} /* Non-compliant - int32_t is not boolean */

 if(i != 0){} /* Compliant */

 for(int i=-10; i;i++){} /* Non-compliant - int32_t is not boolean */

 for(int i=0; i<10;i++){} /* Compliant */

}

This example shows various controlling expressions in while, if, and for statements.

The noncompliant statements (the first while, if, and for examples), use a single
non-Boolean variable. If you use a single variable as the controlling statement, it must
be essentially Boolean (lines 17 and 19). Boolean expressions are also compliant with
MISRA.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 14.2 | MISRA C:2012 Rule 20.8

5-210

 MISRA C:2012 Rule 14.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-211

5 MISRA C 2012

MISRA C:2012 Rule 15.1
The goto statement should not be used

Description

Rule Definition

The goto statement should not be used.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult to
understand.

Message in Report

The goto statement should not be used.

Examples

Use of goto Statements

void foo(void) {

 int i = 0, result = 0;

label1:

 for (i; i < 5; i++) {

 if (i > 2) goto label2; /* Non-compliant */

 }

label2: {

 result++;

 goto label1; /* Non-compliant */

 }

}

5-212

 MISRA C:2012 Rule 15.1

In this example, the rule is violated when goto statements are used.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 15.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-213

5 MISRA C 2012

MISRA C:2012 Rule 15.2
The goto statement shall jump to a label declared later in the same function

Description

Rule Definition

The goto statement shall jump to a label declared later in the same function.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult
to understand. You can use a forward goto statement together with a backward one
to implement iterations. Restricting backward goto statements ensures that you use
only iteration statements provided by the language such as for or while to implement
iterations. This restriction reduces visual complexity of the code.

Message in Report

The goto statement shall jump to a label declared later in the same function.

Examples

Use of Backward goto Statements

void foo(void) {

 int i = 0, result = 0;

label1:

 for (i; i < 5; i++) {

 if (i > 2) goto label2; /* Compliant */

 }

label2: {

 result++;

5-214

 MISRA C:2012 Rule 15.2

 goto label1; /* Non-compliant */

 }

}

In this example, the rule is violated when a goto statement causes a backward jump to
label1.

The rule is not violated when a goto statement causes a forward jump to label2.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 15.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-215

5 MISRA C 2012

MISRA C:2012 Rule 15.3
Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement

Description

Rule Definition

Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult to
understand. Restricting use of goto statements to jump between blocks or into nested
blocks reduces visual code complexity.

Message in Report

Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement.

Examples

goto Statements Jump Inside Block

void f1(int a) {

 if(a <= 0) {

 goto L2; /* Non-compliant - L2 in different block*/

 }

 goto L1; /* Compliant - L1 in same block*/

 if(a == 0) {

5-216

 MISRA C:2012 Rule 15.3

 goto L1; /* Compliant - L1 in outer block*/

 }

 goto L2; /* Non-compliant - L2 in inner block*/

 L1: if(a > 0) {

 L2:;

 }

}

In this example, goto statements cause jumps to different labels. The rule is violated
when:

• The label occurs in a block different from the block containing the goto statement.

The block containing the label neither encloses nor is enclosed by the current block.
• The label occurs in a block enclosed by the block containing the goto statement.

The rule is not violated when:

• The label occurs in the same block as the block containing the goto statement..
• The label occurs in a block that encloses the block containing the goto statement..

goto Statements in switch Block

void f2 (int x, int z) {

 int y = 0;

 switch(x) {

 case 0:

 if(x == y) {

 goto L1; /* Non-compliant - switch-clauses are treated as blocks */

 }

 break;

 case 1:

 y = x;

 L1: ++x;

 break;

 default:

 break;

 }

}

5-217

5 MISRA C 2012

In this example, the label for the goto statement appears to occur in a block that
encloses the block containing the goto statement. However, for the purposes of this rule,
the software considers that each case statement begins a new block. Therefore, the goto
statement violates the rule.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.4 |
MISRA C:2012 Rule 16.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-218

 MISRA C:2012 Rule 15.4

MISRA C:2012 Rule 15.4
There should be no more than one break or goto statement used to terminate any
iteration statement

Description

Rule Definition

There should be no more than one break or goto statement used to terminate any iteration
statement.

Rationale

If you use one break or goto statement in your loop, you have one secondary exit
point from the loop. Restricting number of exits from a loop in this way reduces visual
complexity of your code.

Message in Report

There should be no more than one break or goto statement used to terminate any
iteration statement.

Examples

break Statements in Inner and Outer Loops

volatile int stop;

int func(int *arr, int size, int sat) {

 int i,j;

 int sum = 0;

 for (i=0; i< size; i++) { /* Compliant */

 if(sum >= sat)

 break;

 for (j=0; j< i; j++) { /* Compliant */

5-219

5 MISRA C 2012

 if(stop)

 break;

 sum += arr[j];

 }

 }

}

In this example, the rule is not violated in both the inner and outer loop because both
loops have one break statement each.

break and goto Statements in Loop

volatile int stop;

void displayStopMessage();

int func(int *arr, int size, int sat) {

 int i;

 int sum = 0;

 for (i=0; i< size; i++) { /* Non-compliant */

 if(sum >= sat)

 break;

 if(stop)

 goto L1;

 sum += arr[i];

 }

 L1: displayStopMessage();

}

In this example, the rule is violated because the for loop has one break statement and
one goto statement.

goto Statement in Inner Loop and break Statement in Outer Loop

volatile int stop;

void displayMessage();

int func(int *arr, int size, int sat) {

 int i,j;

 int sum = 0;

5-220

 MISRA C:2012 Rule 15.4

 for (i=0; i< size; i++) { /* Non-compliant */

 if(sum >= sat)

 break;

 for (j=0; j< i; j++) { /* Compliant */

 if(stop)

 goto L1;

 sum += arr[i];

 }

 }

 L1: displayMessage();

}

In this example, the rule is not violated in the inner loop because you can exit the loop
only through the one goto statement. However, the rule is violated in the outer loop
because you can exit the loop through either the break statement or the goto statement
in the inner loop.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-221

5 MISRA C 2012

MISRA C:2012 Rule 15.5
A function should have a single point of exit at the end

Description

Rule Definition

A function should have a single point of exit at the end.

Rationale

This rule requires that a return statement must occur as the last statement in the
function body. Otherwise, the following issues can occur:

• Code following a return statement can be unintentionally omitted.
• If a function that modifies some of its arguments has early return statements, when

reading the code, it is not immediately clear which modifications actually occur.

Message in Report

A function should have a single point of exit at the end.

Examples

More Than One return Statement in Function

#define MAX ((unsigned int)2147483647)

#define NULL (void*)0

typedef unsigned int bool_t;

bool_t false = 0;

bool_t true = 1;

bool_t f1(unsigned short n, char *p) { /* Non-compliant */

 if(n > MAX) {

5-222

 MISRA C:2012 Rule 15.5

 return false;

 }

 if(p == NULL) {

 return false;

 }

 return true;

}

In this example, the rule is violated because there are three return statements.

Correction — Use Variable to Store Return Value

One possible correction is to store the return value in a variable and return this variable
just before the function ends.

#define MAX ((unsigned int)2147483647)

#define NULL (void*)0

typedef unsigned int bool_t;

bool_t false = 0;

bool_t true = 1;

bool_t return_value;

bool_t f2 (unsigned short n, char *p) { /* Compliant */

 return_value = true;

 if(n > MAX) {

 return_value = false;

 }

 if(p == NULL) {

 return_value = false;

 }

 return return_value;

}

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory

5-223

5 MISRA C 2012

Language: C90, C99

See Also
MISRA C:2012 Rule 17.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-224

 MISRA C:2012 Rule 15.6

MISRA C:2012 Rule 15.6
The body of an iteration-statement or a selection-statement shall be a compound
statement

Description

Rule Definition

The body of an iteration-statement or a selection-statement shall be a compound-
statement.

Rationale

The rule applies to:

• Iteration statements such as while, do ... while or for.
• Selection statements such as if ... else or switch.

If the block of code associated with an iteration or selection statement is not contained in
braces, you can make mistakes about the association. For example:

• You can wrongly associate a line of code with an iteration or selection statement
because of its indentation.

• You can accidentally place a semicolon following the iteration or selection statement.
Because of the semicolon, the line following the statement is no longer associated with
the statement even though you intended otherwise.

Message in Report

• The else keyword shall be followed by either a compound statement, or another if
statement.

• An if (expression) construct shall be followed by a compound statement.
• The statement forming the body of a while statement shall be a compound statement.
• The statement forming the body of a do ... while statement shall be a compound

statement.

5-225

5 MISRA C 2012

• The statement forming the body of a for statement shall be a compound statement.
• The statement forming the body of a switch statement shall be a compound

statement.

Examples

Iteration Block

int data_available = 1;

void f1(void) {

 while(data_available) /* Non-compliant */

 process_data();

 while(data_available) { /* Compliant */

 process_data();

 }

}

In this example, the second while block is enclosed in braces and does not violate the
rule.

Nested Selection Statements

void f1(void) {

 if(flag_1) /* Non-compliant */

 if(flag_2) /* Non-compliant */

 action_1();

 else /* Non-compliant */

 action_2();

}

In this example, the rule is violated because the if or else blocks are not enclosed in
braces. Unless indented as above, it is easy to associate the else statement with the
inner if.

Correction — Place Selection Statement Block in Braces

One possible correction is to enclose each block associated with an if or else statement
in braces.

void f1(void) {

5-226

 MISRA C:2012 Rule 15.6

 if(flag_1) { /* Compliant */

 if(flag_2) { /* Compliant */

 action_1();

 }

 }

 else { /* Compliant */

 action_2();

 }

}

Spurious Semicolon After Iteration Statement

void f1(void) {

 while(flag_1); /* Non-compliant */

 {

 flag_1 = action_1();

 }

}

In this example, the rule is violated even though the while statement is followed by
a block in braces. The semicolon following the while statement causes the block to
dissociated from the while statement.

The rule helps detect such spurious semicolons.

Check Information
Group: Control Flow
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-227

5 MISRA C 2012

MISRA C:2012 Rule 15.7

All if … else if constructs shall be terminated with an else statement

Description

Rule Definition

All if … else if constructs shall be terminated with an else statement.

Rationale

Unless there is a terminating else statement in an if...elseif...else construct,
during code review, it is difficult to tell if you considered all possible results for the if
condition.

Message in Report

All if … else if constructs shall be terminated with an else statement.

Examples

Missing else Block

int get_flag_1(void);

int get_flag_2(void);

void action_1(void);

void action_2(void);

void f1(void) {

 int flag_1 = get_flag_1(), flag_2 = get_flag_2();

 if(flag_1) {

 action_1();

 }

 else if(flag_2) {

5-228

 MISRA C:2012 Rule 15.7

 /* Non-compliant */

 action_2();

 }

}

In this example, the rule is violated because the if ... else if construct does not
have a terminating else block.

Correction — Add else Block

To avoid the rule violation, add a terminating else block. The block can be empty.

int get_flag_1(void);

int get_flag_2(void);

void action_1(void);

void action_2(void);

void f1(void) {

 int flag_1 = get_flag_1(), flag_2 = get_flag_2();

 if(flag_1) {

 action_1();

 }

 else if(flag_2) {

 /* Non-compliant */

 action_2();

 }

 else {

 /* No statement required */

 /* ; is optional */

 }

}

Check Information
Group: Control Flow
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 16.5

5-229

5 MISRA C 2012

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-230

 MISRA C:2012 Rule 16.1

MISRA C:2012 Rule 16.1

All switch statements shall be well-formed

Description

Rule Definition

All switch statements shall be well-formed

Rationale

The syntax for switch statements in C is not particularly rigorous and can allow complex,
unstructured behavior. This rule and other rules impose a simple consistent structure on
the switch statement.

Message in Report

All messages in report file begin with "MISRA-C switch statements syntax normative
restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other

code.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

5-231

5 MISRA C 2012

See Also
MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 16.2 | MISRA C:2012 Rule 16.3 |
MISRA C:2012 Rule 16.4 | MISRA C:2012 Rule 16.5 | MISRA C:2012 Rule 16.6

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-232

 MISRA C:2012 Rule 16.2

MISRA C:2012 Rule 16.2
A switch label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement

Description

Rule Definition

A switch label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement

Rationale

The C Standard permits placing a switch label (for instance, case or default) before
any statement contained in the body of a switch statement. This flexibility can lead to
unstructured code. To prevent unstructured code, make sure a switch label appears only
at the outermost level of the body of a switch statement.

Message in Report

All messages in report file begin with "MISRA-C switch statements syntax normative
restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other

code.

Check Information
Group: Switch Statements
Category: Required

5-233

5 MISRA C 2012

AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-234

 MISRA C:2012 Rule 16.3

MISRA C:2012 Rule 16.3
An unconditional break statement shall terminate every switch-clause

Description

Rule Definition

An unconditional break statement shall terminate every switch-clause

Rationale

A switch-clause is a case containing at least one statement. Two consecutive labels
without an intervening statement is compliant with MISRA.

If you fail to end your switch-clauses with a break statement, then control flow “falls”
into the next statement. This next statement can be another switch-clause, or the end of
the switch. This behavior is sometimes intentional, but more often it is an error. If you
add additional cases later, an unterminated switch-clause can cause problems.

Polyspace Specification

Polyspace raises a warning for each noncompliant case clause.

Message in Report

An unconditional break statement shall terminate every switch-clause.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1

5-235

5 MISRA C 2012

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-236

 MISRA C:2012 Rule 16.4

MISRA C:2012 Rule 16.4
Every switch statement shall have a default label

Description

Rule Definition

Every switch statement shall have a default label

Rationale

The requirement for a default label is defensive programming. Even if your switch
covers all possible values, there is no guarantee that the input takes one of these values.
Statements following the default label take some appropriate action. If the default
label requires no action, use comments to describe why there are no specific actions.

Message in Report

Every switch statement shall have a default label.

Examples

Switch Statement Without default

short func1(short xyz){

 switch(xyz){ /* Non-compliant - default label is required */

 case 0:

 ++xyz;

 break;

 case 1:

 case 2:

 break;

 }

 return xyz;

}

5-237

5 MISRA C 2012

In this example, the switch statement does not include a default label, and is therefore
noncompliant.

Correction — Add default With Error Flag

One possible correction is to use the default label to flag input errors. If your switch-
clauses cover all expected input, then the default cases flags any input errors.

short func1(short xyz){

 switch(xyz){ /* Compliant */

 case 0:

 ++xyz;

 break;

 case 1:

 case 2:

 break;

 default:

 errorflag = 1;

 break;

 }

 if (errorflag == 1)

 return errorflag;

 else

 return xyz;

}

Switch Statement for Enumerated Inputs

enum Colors{

 RED, GREEN, BLUE

};

enum Colors func2(enum Colors color){

 enum Colors next;

 switch(color){ /* Non-compliant - default label is required */

 case RED:

 next = GREEN;

 break;

 case GREEN:

 next = BLUE;

 break;

 case BLUE:

5-238

 MISRA C:2012 Rule 16.4

 next = RED;

 break;

 }

 return next;

}

In this example, the switch statement does not include a default label, and is therefore
noncompliant. Even though this switch statement handles all values of the enumeration,
there is no guarantee that color takes one of the those values.

Correction — Add default

To be compliant, add the default label to the end of your switch. You can use this case
to flag unexpected inputs.

enum Colors{

 RED, GREEN, BLUE, ERROR

};

enum Colors func2(enum Colors color){

 enum Colors next;

 switch(color){ /* Compliant */

 case RED:

 next = GREEN;

 break;

 case GREEN:

 next = BLUE;

 break;

 case BLUE:

 next = RED;

 break;

 default:

 next = ERROR;

 break;

 }

 return next;

}

Check Information
Group: Switch Statements

5-239

5 MISRA C 2012

Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 16.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-240

 MISRA C:2012 Rule 16.5

MISRA C:2012 Rule 16.5
A default label shall appear as either the first or the last switch label of a switch
statement

Description

Rule Definition

A default label shall appear as either the first or the last switch label of a switch
statement.

Rationale

Using this rule, you can easily locate the default label within a switch statement.

Message in Report

A default label shall appear as either the first or the last switch label of a switch
statement.

Examples

Default Case in switch Statements

void foo(int var){

 switch(var){

 default: /* Compliant - default is the first label */

 case 0:

 ++var;

 break;

 case 1:

 case 2:

 break;

 }

5-241

5 MISRA C 2012

 switch(var){

 case 0:

 ++var;

 break;

 default: /* Non-compliant - default is mixed with the case labels */

 case 1:

 case 2:

 break;

 }

 switch(var){

 case 0:

 ++var;

 break;

 case 1:

 case 2:

 default: /* Compliant - default is the last label */

 break;

 }

 switch(var){

 case 0:

 ++var;

 break;

 case 1:

 case 2:

 break;

 default: /* Compliant - default is the last label */

 var = 0;

 break;

 }

}

This example shows the same switch statement several times, each with default in a
different place. As the first, third, and fourth switch statements show, default must be
the first or last label. default can be part of a compound switch-clause (for instance, the
third switch example), but it must be the last listed.

Check Information
Group: Switch Statements
Category: Required

5-242

 MISRA C:2012 Rule 16.5

AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.7 | MISRA C:2012 Rule 16.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-243

5 MISRA C 2012

MISRA C:2012 Rule 16.6
Every switch statement shall have at least two switch-clauses

Description

Rule Definition

Every switch statement shall have at least two switch-clauses.

Rationale

A switch statement with a single path is redundant and can indicate a programming
error.

Message in Report

Every switch statement shall have at least two switch-clauses.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-244

 MISRA C:2012 Rule 16.7

MISRA C:2012 Rule 16.7
A switch-expression shall not have essentially Boolean type

Description

Rule Definition

A switch-expression shall not have essentially Boolean type

Rationale

The C Standard requires the controlling expression to a switch statement to have an
integer type. Because C implements Boolean values with integer types, it is possible to
have a Boolean expression control a switch statement. For controlling flow with Boolean
types, an if-else construction is more appropriate.

Polyspace Specification

If your configuration uses the -boolean-types option, the number of reported
violations can increase.

Message in Report

A switch-expression shall not have essentially Boolean type.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”

5-245

5 MISRA C 2012

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-246

 MISRA C:2012 Rule 17.1

MISRA C:2012 Rule 17.1
The features of <starg.h> shall not be used

Description

Rule Definition

The features of <stdarg.h> shall not be used..

Rationale

The rule forbids use of va_list, va_arg, va_start, va_end, and va_copy.

You can use these features in ways where the behavior is not defined in the Standard.
For instance:

• You invoke va_start in a function but do not invoke the corresponding va_end
before the function block ends.

• You invoke va_arg in different functions on the same variable of type va_list.
• va_arg has the syntax type va_arg (va_list ap, type).

You invoke va_arg with a type that is incompatible with the actual type of the
argument retrieved from ap.

Message in Report

The features of <stdarg.h> shall not be used.

Examples

Use of va_start, va_list, va_arg, and va_end

#include<stdarg.h>

void f2(int n, ...) {

5-247

5 MISRA C 2012

 int i;

 double val;

 va_list vl; /* Non-compliant */

 va_start(vl, n); /* Non-compliant */

 for(i = 0; i < n; i++)

 {

 val = va_arg(vl, double); /* Non-compliant */

 }

 va_end(vl); /* Non-compliant */

}

In this example, the rule is violated because va_start, va_list, va_arg and va_end
are used.

Undefined Behavior of va_arg

#include <stdarg.h>

void h(va_list ap) { /* Non-compliant */

 double y;

 y = va_arg(ap, double); /* Non-compliant */

}

void g(unsigned short n, ...) {

 unsigned int x;

 va_list ap; /* Non-compliant */

 va_start(ap, n); /* Non-compliant */

 x = va_arg(ap, unsigned int); /* Non-compliant */

 h(ap);

 /* Undefined - ap is indeterminate because va_arg used in h () */

 x = va_arg(ap, unsigned int); /* Non-compliant */

}

void f(void) {

 /* undefined - uint32_t:double type mismatch when g uses va_arg () */

 g(1, 2.0, 3.0);

5-248

 MISRA C:2012 Rule 17.1

}

In this example, va_arg is used on the same variable ap of type va_list in both
functions g and h. In g, the second argument is unsigned int and in h, the second
argument is double. This type mismatch causes undefined behavior.

Check Information
Group: Function
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-249

5 MISRA C 2012

MISRA C:2012 Rule 17.2
Functions shall not call themselves, either directly or indirectly

Description

Rule Definition

Functions shall not call themselves, either directly or indirectly.

Rationale

Variables local to a function are stored in the call stack. If a function calls itself
directly or indirectly several times, the available stack space can be exceeded, causing
serious failure. Unless the recursion is tightly controlled, it is difficult to determine the
maximum stack space required.

Message in Report

Message in Report: Function XX shall not call itself either directly or indirectly.
Function XX is called indirectly by YY.

Examples

Direct and Indirect Recursion

void foo1(void) { /* Non-compliant - Indirect recursion foo1->foo2->foo1... */

 foo2();

 foo1(); /* Non-compliant - Direct recursion */

}

void foo2(void) {

 foo1();

}

In this example, the rule is violated because of:

5-250

 MISRA C:2012 Rule 17.2

• Direct recursion foo1 → foo1.
• Indirect recursion foo1 → foo2 → foo1.

Check Information
Group: Function
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Polyspace Results
Number of Recursions | Number of Direct Recursions

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-251

5 MISRA C 2012

MISRA C:2012 Rule 17.3
A function shall not be declared implicitly

Description

Rule Definition

A function shall not be declared implicitly.

Rationale

An implicit declaration occurs when you call a function before declaring or defining
it. When you declare a function explicitly before calling it, the compiler can match the
argument and return types with the parameter types in the declaration. If an implicit
declaration occurs, the compiler makes assumptions about the argument and return
types. For instance, it assumes a return type of int. The assumptions might not agree
with what you expect and cause undesired type conversions.

Message in Report

Function 'XX' has no complete visible prototype at call.

Examples

Function Not Declared Before Call

#include <math.h>

extern double power3 (double val, int exponent);

int getChoice(void);

double func() {

 double res;

 int ch = getChoice();

 if(ch == 0) {

5-252

 MISRA C:2012 Rule 17.3

 res = power(2.0, 10); /* Non-compliant */

 }

 else if(ch==1) {

 res = power2(2.0, 10); /* Non-compliant */

 }

 else {

 res = power3(2.0, 10); /* Compliant */

 return res;

 }

}

double power2 (double val, int exponent) {

 return (pow(val, exponent));

}

In this example, the rule is violated when a function that is not declared is called in the
code. Even if a function definition exists later in the code, the rule violation occurs.

The rule is not violated when the function is declared before it is called in the code. If the
function definition exists in another file and is available only during the link phase, you
can declare the function in one of the following ways:

• Declare the function with the extern keyword in the current file.
• Declare the function in a header file and include the header file in the current file.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C90

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

5-253

5 MISRA C 2012

• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-254

 MISRA C:2012 Rule 17.4

MISRA C:2012 Rule 17.4
All exit paths from a function with non-void return type shall have an explicit return
statement with an expression

Description

Rule Definition

All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

Rationale

If a non-void function does not explicitly return a value but the calling function uses the
return value, the behavior is undefined. To prevent this behavior:

1 You must provide return statements with an explicit expression.
2 You must ensure that during run time, at least one return statement executes.

Message in Report

Missing return value for non-void function 'XX'.

Examples

Missing Return Statement Along Certain Execution Paths

int absolute(int v) {

 if(v < 0) {

 return v;

 }

}

In this example, the rule is violated because a return statement does not exist on all
execution paths. If v >= 0, then the control returns to the calling function without an
explicit return value.

5-255

5 MISRA C 2012

Return Statement Without Explicit Expression

#define SIZE 10

int table[SIZE];

unsigned short lookup(unsigned short v) {

 if((v < 0) || (v > SIZE)) {

 return;

 }

 return table[v];

}

In this example, the rule is violated because the return statement in the if block does
not have an explicit expression.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.5

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-256

 MISRA C:2012 Rule 17.5

MISRA C:2012 Rule 17.5
The function argument corresponding to a parameter declared to have an array type
shall have an appropriate number of elements

Description

Rule Definition

The function argument corresponding to a parameter declared to have an array type shall
have an appropriate number of elements.

Rationale

If you use an array declarator for a function parameter instead of a pointer, the function
interface is clearer because you can state the minimum expected array size. If you do
not state a size, the expectation is that the function can handle an array of any size. In
such cases, the size value is typically another parameter of the function, or the array is
terminated with a sentinel value.

However, it is legal in C to specify an array size but pass an array of smaller size. This
rule prevents you from passing an array of size smaller than the size you declared.

Message in Report

The function argument corresponding to a parameter declared to have an array type
shall have an appropriate number of elements.

The argument type has actual_size elements whereas the parameter type expects
expected_size elements.

Examples

Incorrect Array Size Passed to Function

void func(int arr[4]);

5-257

5 MISRA C 2012

int main() {

 int arrSmall[3] = {1,2,3};

 int arr[4] = {1,2,3,4};

 int arrLarge[5] ={1,2,3,4,5};

 func(arrSmall); /* Non-compliant */

 func(arr); /* Compliant */

 func(arrLarge); /* Compliant */

 return 0;

}

In this example, the rule is violated when arrSmall, which has size 3, is passed to func,
which expects at least 4 elements.

Check Information
Group: Functions
Category: Advisory
AGC Category: Readability
Language: C90. C99

See Also
MISRA C:2012 Rule 17.6

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5-258

 MISRA C:2012 Rule 17.6

MISRA C:2012 Rule 17.6
The declaration of an array parameter shall not contain the static keyword between the
[]

Description

Rule Definition

The declaration of an array parameter shall not contain the static keyword between the [].

Rationale

If you use the static keyword within [] for an array parameter of a function, you
can inform a C99 compiler that the array contains a minimum number of elements.
The compiler can use this information to generate efficient code for certain processors.
However, in your function call, if you provide less than the specified minimum number,
the behavior is not defined.

Message in Report

The declaration of an array parameter shall not contain the static keyword between the
[].

Examples

Use of static Keyword Within [] in Array Parameter

extern int arr1[20];

extern int arr2[10];

/* Non-compliant: static keyword used in array declarator */

unsigned int total (unsigned int n, unsigned int arr[static 20]) {

 unsigned int i;

 unsigned int sum = 0;

5-259

5 MISRA C 2012

 for (i=0U; i < n; i++) {

 sum+= arr[i];

 }

 return sum;

}

void func (void) {

 int res, res2;

 res = total (10U, arr1); /* Non-compliant - behavior not defined */

 res2 = total (20U, arr2); /* Non-compliant, even if behavior is defined */

}

In this example, the rule is violated when the static keyword is used within [] in the
array parameter of function total. Even if you call total with array arguments where
the behavior is well-defined, the rule violation occurs.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-260

 MISRA C:2012 Rule 17.7

MISRA C:2012 Rule 17.7
The value returned by a function having non-void return type shall be used

Description

Rule Definition

The value returned by a function having non-void return type shall be used.

Rationale

You can unintentionally call a function with a non-void return type but not use the
return value. Because the compiler allows the call, you might not catch the omission.
This rule forbids calls to a non-void function where the return value is not used. If you
do not intend to use the return value of a function, explicitly cast the return value to
void.

Message in Report

The value returned by a function having non-void return type shall be used.

Examples

Used and Unused Return Values

unsigned int cutOff(unsigned int val) {

 if (val > 10 && val < 100) {

 return val;

 }

 else {

 return 0;

 }

}

unsigned int getVal(void);

5-261

5 MISRA C 2012

void func2(void) {

 unsigned int val = getVal(), res;

 cutOff(val); /* Non-compliant */

 res = cutOff(val); /* Compliant */

 (void)cutOff(val); /* Compliant */

}

In this example, the rule is violated when the return value of cutOff is not used
subsequently.

The rule is not violated when the return value is:

• Assigned to another variable.
• Explicitly cast to void.

Check Information
Group: Function
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-262

 MISRA C:2012 Rule 17.8

MISRA C:2012 Rule 17.8
A function parameter should not be modified

Description

Rule Definition

A function parameter should not be modified.

Rationale

When you modify a parameter, the function argument corresponding to the parameter
is not modified. However, you or another programmer unfamiliar with C can expect by
mistake that the argument is also modified when you modify the parameter.

Message in Report

A function parameter should not be modified.

Examples

Function Parameter Modified

int input(void);

void func(int param1, int* param2) {

 param1 = input(); /* Non-compliant */

 param2 = input(); / Compliant */

}

In this example, the rule is violated when the parameter param1 is modified.

The rule is not violated when the parameter is a pointer param2 and *param2 is
modified.

5-263

5 MISRA C 2012

Check Information
Group: Functions
Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5-264

 MISRA C:2012 Rule 18.1

MISRA C:2012 Rule 18.1

A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand

Description

Rule Definition

A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand.

Rationale

Using an invalid array subscript can lead to erroneous behavior of the program. Run-
time derived array subscripts are especially troublesome because they cannot be easily
checked by manual review or static analysis.

The C Standard defines the creation of a pointer to one beyond the end of the array. The
rule permits the C Standard. Dereferencing a pointer to one beyond the end of an array
causes undefined behavior and is noncompliant.

Polyspace Specification

Polyspace flags this rule during the analysis as:

• Bug Finder — Array access out-of-bounds and Pointer access out-of-
bounds

• Code Prover — Illegally dereferenced pointer and Out of bounds array
index

Message in Report

A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand.

5-265

5 MISRA C 2012

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1 | MISRA C:2012 Rule 18.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-266

 MISRA C:2012 Rule 18.2

MISRA C:2012 Rule 18.2
Subtraction between pointers shall only be applied to pointers that address elements of
the same array

Description

Rule Definition

Subtraction between pointers shall only be applied to pointers that address elements of the
same array.

Rationale

This rule applies to expressions of the form pointer_expression1 -
pointer_expression2. The behavior is undefined if pointer_expression1 and
pointer_expression2:

• Do not point to elements of the same array,
• Or do not point to the element one beyond the end of the array.

Message in Report

Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Examples

Subtracting Pointers

#include <stddef.h>

void f1 (int32_t *ptr)

{

 int32_t a1[10];

5-267

5 MISRA C 2012

 int32_t a2[10];

 int32_t *p1 = &a1[1];

 int32_t *p2 = &a2[10];

 ptrdiff_t diff1, diff2, diff3;

 diff1 = p1 - a1; // Compliant

 diff2 = p2 - a2; // Compliant

 diff3 = p1 - p2; // Non-compliant

}

In this example, the three subtraction expressions show the difference between compliant
and noncompliant pointer subtractions. The diff1 and diff2 subtractions are
compliant because the pointers point to the same array. The diff3 subtraction is not
compliant because p1 and p2 point to different arrays.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1 | MISRA C:2012 Rule 18.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-268

 MISRA C:2012 Rule 18.3

MISRA C:2012 Rule 18.3
The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object

Description

Rule Definition

The relational operators >, >=, <, and <= shall not be applied to objects of pointer type
except where they point into the same object.

Rationale

If two pointers do not point to the same object, comparisons between the pointers
produces undefined behavior .

You can address the element beyond the end of an array, but you cannot access this
element.

Message in Report

The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object.

Examples

Pointer and Array Comparisons

void f1(void){

 int arr1[10];

 int arr2[10];

 int *ptr1 = arr1;

 if(ptr1 < arr2){} /* Non-compliant */

 if(ptr1 < arr1){} /* Compliant */

5-269

5 MISRA C 2012

}

In this example, ptr1 is a pointer to arr1. To be compliant with rule 18.3, you can
compare only ptr1 with arr1. Therefore, the comparison between ptr1 and arr2 is
noncompliant.

Structure Comparisons

struct limits{

 int lower_bound;

 int upper_bound;

};

void func2(void){

 struct limits lim_1 = { 2, 5 };

 struct limits lim_2 = { 10, 5 };

 if(&lim_1.lower_bound <= &lim_2.upper_bound){} /* Non-compliant *

 if(&lim_1.lower_bound <= &lim_1.upper_bound){} /* Compliant */

}

This example defines two limits structures, lim1 and lim2, and compares the
elements. To be compliant with rule 18.3, you can compare only the structure
elements within a structure. The first comparison compares the lower_bound of
lim1 and the upper_bound of lim2. This comparison is noncompliant because
the lim_1.lower_bound and lim_2.upper_bound are elements of two different
structures.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1

More About
• “Activate Coding Rules Checker”

5-270

 MISRA C:2012 Rule 18.3

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-271

5 MISRA C 2012

MISRA C:2012 Rule 18.4

The +, -, += and -= operators should not be applied to an expression of pointer type

Description

Rule Definition

The +, -, += and -= operators should not be applied to an expression of pointer type.

Rationale

The preferred form of pointer arithmetic is using the array subscript syntax ptr[expr].
This syntax is clear and less prone to error than pointer manipulation. With pointer
manipulation, any explicitly calculated pointer value has the potential to access
unintended or invalid memory addresses. Array indexing can also access unintended or
invalid memory, but it is easier to review.

To a new C programmer, the expression ptr+1 can be mistakenly interpreted as one plus
the address of ptr. However, the new memory address depends on the size, in bytes, of
the pointer’s target. This confusion can lead to unexpected behavior.

When used with caution, pointer manipulation using ++ can be more natural (for
instance, sequentially accessing locations during a memory test).

Polyspace Specification

Polyspace flags operations on pointers, for example, Pointer + Integer, Integer +
Pointer, Pointer - Integer.

Message in Report

The +, -, += and -= operators should not be applied to an expression of pointer type.

5-272

 MISRA C:2012 Rule 18.4

Examples

Pointers and Array Expressions

void fun1(void){

 unsigned char arr[10];

 unsigned char *ptr;

 unsigned char index = 0U;

 index = index + 1U; /* Compliant - rule only applies to pointers */

 arr[index] = 0U; /* Compliant */

 ptr = &arr[5]; /* Compliant */

 ptr = arr;

 ptr++; /* Compliant - increment operator not + */

 (ptr + 5) = 0U; / Non-compliant */

 ptr[5] = 0U; /* Compliant */

}

This example shows various operations with pointers and arrays. The only operation in
this example that is noncompliant is using the + operator directly with a pointer (line
12).

Adding Array Elements Inside a for Loop

void fun2(void){

 unsigned char array_2_2[2][2] = {{1U, 2U}, {4U, 5U}};

 unsigned char i = 0U;

 unsigned char j = 0U;

 unsigned char sum = 0U;

 for(i = 0u; i < 2U; i++){

 unsigned char *row = array_2_2[i];

 for(j = 0u; j < 2U; j++){

 sum += row[j]; /* Compliant */

 }

 }

}

In this example, the second for loop uses the array pointer row in an arithmetic
expression. However, this usage is compliant because it uses the array index form.

5-273

5 MISRA C 2012

Pointers and Array Expressions

void fun3(unsigned char *ptr1, unsigned char ptr2[]){

 ptr1++; /* Compliant */

 ptr1 = ptr1 - 5; /* Non-compliant */

 ptr1 -= 5; /* Non-compliant */

 ptr1[2] = 0U; /* Compliant */

 ptr2++; /* Compliant */

 ptr2 = ptr2 + 3; /* Non-compliant */

 ptr2 += 3; /* Non-compliant */

 ptr2[3] = 0U; /* Compliant */

}

This example shows the offending operators used on pointers and arrays. Notice that the
same types of expressions are compliant and noncompliant for both pointers and arrays.

If ptr1 does not point to an array with at least six elements, and ptr2 does not point to
an array with at least 4 elements, this example violates rule 18.1.

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 18.1 | MISRA C:2012 Rule 18.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-274

 MISRA C:2012 Rule 18.5

MISRA C:2012 Rule 18.5
Declarations should contain no more than two levels of pointer nesting

Description

Rule Definition

Declarations should contain no more than two levels of pointer nesting.

Rationale

The use of more than two levels of pointer nesting can seriously impair the ability to
understand the behavior of the code. Avoid this usage.

Message in Report

Declarations should contain no more than two levels of pointer nesting.

Examples

Pointer Nesting

typedef char *INTPTR;

void function(char ** arrPar[]) /* Non-compliant - 3 levels */

{

 char ** obj2; /* Compliant */

 char *** obj3; /* Non-compliant */

 INTPTR * obj4; /* Compliant */

 INTPTR * const * const obj5; /* Non-compliant */

 char ** arr[10]; /* Compliant */

 char ** (*parr)[10]; /* Compliant */

 char * (**pparr)[10]; /* Compliant */

}

5-275

5 MISRA C 2012

struct s{

 char * s1; /* Compliant */

 char ** s2; /* Compliant */

 char *** s3; /* Non-compliant */

};

struct s * ps1; /* Compliant */

struct s ** ps2; /* Compliant */

struct s *** ps3; /* Non-compliant */

char ** (*pfunc1)(void); /* Compliant */

char ** (**pfunc2)(void); /* Compliant */

char ** (***pfunc3)(void); /* Non-compliant */

char *** (**pfunc4)(void); /* Non-compliant */

This example shows various pointer declarations and nesting levels. Any pointer with
more than two levels of nesting is considered noncompliant.

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-276

 MISRA C:2012 Rule 18.6

MISRA C:2012 Rule 18.6
The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist

Description

Rule Definition

The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist.

Rationale

The address of an object becomes indeterminate when the lifetime of that object expires.
Any use of an indeterminate address results in undefined behavior.

Polyspace Specification

Polyspace flags a violation when assigning an address to a global variable, returning a
local variable address, or returning a parameter address.

Message in Report

The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist.

Examples

Address of Local Variables

char *func(void){

 char local_auto;

 return &local_auto /* Non-compliant

5-277

5 MISRA C 2012

 * &local_auto is indeterminate */

}

In this example, because local_auto is a local variable, after the function returns, the
address of local_auto is indeterminate.

Copying Pointer Addresses to Local Variables

char *sp;

void f(unsigned short u){

 g(&u);

}

void g(unsigned short *p){

 sp = p; /* Non-compliant

 * the parameter u from f is copied to static sp */

}

void h(void){

 static unsigned short *q;

 unsigned short x =0u;

 q = &x; /* Non-compliant -

 * &x stored in object with greater lifetime */

}

In this example, the function g stores a copy of its pointer parameter p. If p always
points to an object with static storage duration, then the code is compliant with this rule.
However, in this example , p points to an object with automatic storage duration. In such
a case, copying the parameter p is noncompliant.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”

5-278

 MISRA C:2012 Rule 18.6

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-279

5 MISRA C 2012

MISRA C:2012 Rule 18.7
Flexible array members shall not be declared

Description

Rule Definition

Flexible array members shall not be declared.

Rationale

Flexible array members are usually used with dynamic memory allocation. Dynamic
memory allocation is banned by Directive 4.12 and Rule 21.3.

Message in Report

Flexible array members shall not be declared.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 21.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-280

 MISRA C:2012 Rule 18.8

MISRA C:2012 Rule 18.8
Variable-length array types shall not be used

Description

Rule Definition

Variable-length array types shall not be used.

Rationale

When the size of an array declared in a block or function prototype is not an integer
constant expression, you specify variable array types. Variable array types are typically
implemented as a variable size object stored on the stack. Using variable type arrays
can make it impossible to determine statistically the amount of memory for the stack
requires.

If the size of a variable-length array is negative or zero, the behavior is undefined.

If a variable-length array must be compatible with another array type, then the size of
the array types must be identical and positive integers. If your array does not meet these
requirements, the behavior is undefined.

If you use a variable-length array type in a sizeof, it is uncertain if the array size is
evaluated or not.

Message in Report

Variable-length array types shall not be used.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C99

5-281

5 MISRA C 2012

See Also
MISRA C:2012 Rule 13.6

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-282

 MISRA C:2012 Rule 19.1

MISRA C:2012 Rule 19.1
An object shall not be assigned or copied to an overlapping object

Description

Rule Definition

An object shall not be assigned or copied to an overlapping object.

Rationale

When you assign an object to another object with overlapping memory, the behavior is
undefined. The exceptions are:

• You assign an object to another object with exactly overlapping memory and
compatible type.

• You copy one object to another using memmove.

Message in Report

• An object shall not be assigned or copied to an overlapping object.
• Destination and source of XX overlap, the behavior is undefined.

Examples

Assignment of Unions

void func (void) {

 union {

 short i;

 int j;

 } a = {0}, b = {1};

 a.j = a.i; /* Non-compliant */

5-283

5 MISRA C 2012

 a = b; /* Compliant */

}

In this example, the rule is violated when a.i is assigned to a.j because the two
variables have overlapping regions of memory.

Assignment of Array Segments

#include <string.h>

int arr[10];

void func(void) {

 memcpy (&arr[5], &arr[4], 2u * sizeof(arr[0])); /* Non-compliant */

 memcpy (&arr[5], &arr[4], sizeof(arr[0])); /* Compliant */

 memcpy (&arr[1], &arr[4], 2u * sizeof(arr[0])); /* Compliant */

}

In this example, memory equal to twice sizeof(arr[0]) is the memory space taken
up by two array elements. If that memory space begins from &a[4] and &a[5], the two
memory regions overlap. The rule is violated when the memcpy function is used to copy
the contents of these two overlapping memory regions.

Check Information
Group: Overlapping Storage
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 19.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-284

 MISRA C:2012 Rule 19.1

Introduced in R2014b

5-285

5 MISRA C 2012

MISRA C:2012 Rule 19.2
The union keyword should not be used

Description

Rule Definition

The union keyword should not be used.

Rationale

If you write to a union member and read the same union member, the behavior is well-
defined. But if you read a different member, the behavior depends on the relative sizes of
the members. For instance:

• If you read a union member with wider memory size, the value you read is
unspecified.

• Otherwise, the value is implementation-dependant.

Message in Report

The union keyword should not be used.

Examples

Possible Problems with union Keyword

unsigned int zext(unsigned int s)

{

 union /* Non-compliant */

 {

 unsigned int ul;

 unsigned short us;

 } tmp;

5-286

 MISRA C:2012 Rule 19.2

 tmp.us = s;

 return tmp.ul; /* Unspecified value */

}

In this example, the 16-bit short field tmp.us is written but the wider 32-bit int
field tmp.ul is read. Using the union keyword can cause such unspecified behavior.
Therefore, the rule forbids using the union keyword.

Check Information
Group: Overlapping Storage
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 19.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-287

5 MISRA C 2012

MISRA C:2012 Rule 20.1
#include directives should only be preceded by preprocessor directives or comments

Description

Rule Definition

#include directives should only be preceded by preprocessor directives or comments.

Rationale

For better code readability, group all #include directives in a file at the top of the
file. Undefined behavior can occur if you use #include to include a standard header
file within a declaration or definition, or if you use part of the Standard Library before
including the related standard header files.

Polyspace Specification

Polyspace flags text that precedes a #include directive. Polyspace ignores preprocessor
directives, comments, spaces, or "new lines".

Message in Report

#include directives should only be preceded by preprocessor directives or comments.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”

5-288

 MISRA C:2012 Rule 20.1

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-289

5 MISRA C 2012

MISRA C:2012 Rule 20.2
The ', " or \ characters and the /* or // character sequences shall not occur in a header file
name

Description

Rule Definition

The ', " or \ characters and the /* or // character sequences shall not occur in a header
file name.

Rationale

The program’s behavior is undefined if:

• You use ', ", \, /* or // between < > delimiters in a header name preprocessing
token.

• You use ', \, /* or // between " delimiters in a header name preprocessing token.

Although \ results in undefined behavior, many implementations accept / in its place.

Polyspace Specification

Polyspace flags the characters ', ", \, /* or // between < and > in #include
<filename>.

Polyspace flags the characters ', \, /* or // between " and " in #include
"filename".

Message in Report

The ', "or \ characters and the /* or // character sequences shall not occur in a header file
name.

Check Information
Group: Preprocessing Directives

5-290

 MISRA C:2012 Rule 20.2

Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-291

5 MISRA C 2012

MISRA C:2012 Rule 20.3
The #include directive shall be followed by either a <filename> or \"filename\" sequence

Description

Rule Definition

The #include directive shall be followed by either a <filename> or \"filename\" sequence.

Rationale

This rule applies only after macro replacement.

The behavior is undefined if an #include directive does not use one of the following
forms:

• #include <filename>

• #include "filename"

Message in Report

• ‘#include' expects \"FILENAME\" or <FILENAME>
• ‘#include_next' expects \"FILENAME\" or <FILENAME>
• ‘#include' does not expect string concatenation.
• ‘#include_next' does not expect string concatenation.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”

5-292

 MISRA C:2012 Rule 20.3

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-293

5 MISRA C 2012

MISRA C:2012 Rule 20.4
A macro shall not be defined with the same name as a keyword

Description

Rule Definition

A macro shall not be defined with the same name as a keyword.

Rationale

Using macros to change the meaning of keywords can be confusing. The behavior is
undefined if you include a standard header while a macro is defined with the same name
as a keyword.

Message in Report

• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.

Examples

Redefining int keyword

#define int some_other_type

 /* Non-compliant - int keyword behavior altered */

#include <stdlib.h>

...

In this example, the #define violates Rule 20.4 because it alters the behavior of the int
keyword. The inclusion of the standard header results in undefined behavior.

Correction — Rename keyword

One possible correction is to use a different keyword:

5-294

 MISRA C:2012 Rule 20.4

#define int_mine some_other_type

#include <stdlib.h>

...

Redefining keywords versus statements

#define while(E) for (; (E) ;) /* Non-compliant - while redefined*/

#define unless(E) if (!(E)) /* Compliant*/

#define seq(S1, S2) do{ S1; S2;} while(false) /* Compliant*/

#define compound(S) {S;} /* Compliant*/

...

In this example, it is noncompliant to redefine the keyword while, but it is compliant to
define a macro that expands to statements.

Redefining keywords in different standards

#define inline

In this example, redefining inline is compliant in C90, but not in C99 because inline
is not a keyword in C90.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Languages: C90, C99

See Also
MISRA C:2012 Rule 21.1

More About
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-295

5 MISRA C 2012

MISRA C:2012 Rule 20.5
#undef should not be used

Description

Rule Definition

#undef should not be used.

Rationale

#undef can make the software unclear which macros exist at a particular point within a
translation unit.

Message in Report

#undef shall not be used.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-296

 MISRA C:2012 Rule 20.6

MISRA C:2012 Rule 20.6
Tokens that look like a preprocessing directive shall not occur within a macro argument

Description

Rule Definition

Tokens that look like a preprocessing directive shall not occur within a macro argument.

Rationale

An argument containing sequences of tokens that otherwise act as preprocessing
directives leads to undefined behavior.

Polyspace Specification

Polyspace looks for the # character in a macro arguments (outside a string or character
constant).

Message in Report

Macro argument shall not look like a preprocessing directive.

Examples

Macro Expansion Causing Non-Compliance

#define M(A) printf (#A)

#include <stdio.h>

void foo(void){

 M(

#ifdef SW /* Non-compliant */

5-297

5 MISRA C 2012

 "Message 1"

#else

 "Message 2" /* Compliant - SW not defined */

#endif /* Non-compliant */

);

}

This example shows a macro definition and the macro usage. #ifdef SW and #endif
are noncompliant because they look like a preprocessing directive. Polyspace does not
flag #else "Message 2" because after macro expansion, Polyspace knows SW is not
defined. The expanded macro is printf ("\"Message 2\"");

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-298

 MISRA C:2012 Rule 20.7

MISRA C:2012 Rule 20.7
Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses

Description

Rule Definition

Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses.

Rationale

If you do not use parentheses , then it is possible that operator precedence does not give
the results that you want when macro substitution occurs.

If you are not using a macro parameter as an expression, then the parentheses are not
necessary because no operators are involved in the macro.

Message in Report

Expanded macro parameter param shall be enclosed in parentheses.

Examples

Macro Expressions

#define mac1(x, y) (x * y)

#define mac2(x, y) ((x) * (y))

void foo(void){

 int r;

 r = mac1(1 + 2, 3 + 4); /* Non-compliant */

 r = mac1((1 + 2), (3 + 4)); /* Compliant */

5-299

5 MISRA C 2012

 r = mac2(1 + 2, 3 + 4); /* Compliant */

}

In this example, mac1 and mac2 are two defined macro expressions. The definition of
mac1 does not enclose the arguments in parentheses. In line 7, the macro expands to
r = (1 + 2 * 3 + 4); This expression can be (1 + (2 * 3) + 4) or (1 + 2)
* (3 + 4). However, without parentheses, the program does not know the intended
expression. Line 8 uses parentheses, so the line expands to (1 + 2) * (3 + 4). This
macro expression is compliant.

The definition of mac2 does enclose the argument in parentheses. Line 10 (the same
macro arguments in line 7) expands to (1 + 2) * (3 + 4). This macro and macro
expression are compliant.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.9

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-300

 MISRA C:2012 Rule 20.8

MISRA C:2012 Rule 20.8
The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1

Description

Rule Definition

The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1.

Rationale

Strong typing requires that conditional inclusion preprocessing directives, #if or #elif,
have a controlling expression that evaluates to a Boolean value.

Message in Report

The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 14.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-301

5 MISRA C 2012

MISRA C:2012 Rule 20.9
All identifiers used in the controlling expression of #if or #elif preprocessing directives
shall be #define’d before evaluation

Description

Rule Definition

All identifiers used in the controlling expression of #if or #elif preprocessing directives
shall be #define’d before evaluation.

Rationale

If attempt to use a macro identifier in a preprocessing directive, and you have not defined
that identifier, then the preprocessor assumes that it has a value of zero. This value
might not meet developer expectations.

Message in Report

Identifier is not defined.

Examples

Macro Identifiers

#if M == 0 /* Non-compliant - Not defined */

#endif

#if defined (M) /* Compliant - M is not evaluate */

#if M == 0 /* Compliant - M is known to be defined */

#endif

#endif

#if defined (M) && (M == 0) /* Compliant

 * if M defined, M evaluated in (M == 0) */

5-302

 MISRA C:2012 Rule 20.9

#endif

This example shows various uses of M in preprocessing directives. The second and third
#if clauses check to see if the software defines M before evaluating M. The first #if
clause does not check to see if M is defined, and because M is not defined, the statement is
noncompliant.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.9

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-303

5 MISRA C 2012

MISRA C:2012 Rule 20.10
The # and ## preprocessor operators should not be used

Description

Rule Definition

The # and ## preprocessor operators should not be used.

Rationale

The order of evaluation associated with multiple #, multiple ##, or a mix of # and ##
preprocessor operators is unspecified. In some cases, it is therefore not possible to predict
the result of macro expansion.

The use of ## can result in obscured code.

Message in Report

The # and ## preprocessor operators should not be used.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 20.11

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

5-304

 MISRA C:2012 Rule 20.10

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-305

5 MISRA C 2012

MISRA C:2012 Rule 20.11
A macro parameter immediately following a # operator shall not immediately be followed
by a ## operator

Description

Rule Definition

A macro parameter immediately following a # operator shall not immediately be followed
by a ## operator.

Rationale

The order of evaluation associated with multiple #, multiple ##, or a mix of # and ##
preprocessor operators, is unspecified. Rule 20.10 discourages the use of # and ##. The
result of a # operator is a string literal. It is extremely unlikely that pasting this result to
any other preprocessing token results in a valid token.

Message in Report

The ## preprocessor operator shall not follow a macro parameter following a #
preprocessor operator.

Examples

Use of # and ##

#define A(x) #x /* Compliant */

#define B(x, y) x ## y /* Compliant */

#define C(x, y) #x ## y /* Non-compliant */

In this example, you can see three uses of the # and ## operators. You can use these
preprocessing operators alone (line 1 and line 2), but using # then ## is noncompliant
(line 3).

5-306

 MISRA C:2012 Rule 20.11

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 20.10

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-307

5 MISRA C 2012

MISRA C:2012 Rule 20.12
A macro parameter used as an operand to the # or ## operators, which is itself subject to
further macro replacement, shall only be used as an operand to these operators

Description

Rule Definition

A macro parameter used as an operand to the # or ## operators, which is itself subject to
further macro replacement, shall only be used as an operand to these operators.

Rationale

The parameter to # or ## is not expanded prior to being used. The same parameter
appearing elsewhere in the replacement text is expanded. If the macro parameter is
itself subject to macro replacement, its use in mixed contexts within a macro replacement
might not meet developer expectations.

Message in Report

Expanded macro parameter param1 is also an operand of op operator.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-308

 MISRA C:2012 Rule 20.13

MISRA C:2012 Rule 20.13
A line whose first token is # shall be a valid preprocessing directive

Description

Rule Definition

A line whose first token is # shall be a valid preprocessing directive

Rationale

You can use a preprocessing directive to conditionally exclude source code until it
encounters a corresponding #else, #elif, #endif directive. If your compiler does not
detect a malformed or invalid preprocessing directive inside excluded source code, more
code than you intended to excluded.

If all preprocessing directives are syntactically valid, even in excluded code, this
unintended code exclusion cannot happen.

Message in Report

Directive is not syntactically meaningful.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

5-309

5 MISRA C 2012

• “Software Quality Objective Subsets (C:2012)”

5-310

 MISRA C:2012 Rule 20.14

MISRA C:2012 Rule 20.14
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,
#ifdef or #ifndef directive to which they are related

Description

Rule Definition

All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,
#ifdef or #ifndef directive to which they are related.

Rationale

When conditional compilation directives include or exclude blocks of code and are spread
over multiple files, confusion arises. If you terminate an #if directive within the same
file, you reduce the visual complexity of the code and the chances of an error.

If you terminate #if directives within the same file, you can use #if directives in
included files

Message in Report

• ‘#else' not within a conditional.
• ‘#elsif' not within a conditional.
• ‘#endif' not within a conditional. unterminated conditional directive.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”

5-311

5 MISRA C 2012

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

5-312

 MISRA C:2012 Rule 21.1

MISRA C:2012 Rule 21.1
#define and #undef shall not be used on a reserved identifier or reserved macro name

Description

Rule Definition

#define and #undef shall not be used on a reserved identifier or reserved macro name.

Rationale

Reserved identifiers and reserved macro names are intended for use by the
implementation. Removing or changing the meaning of a reserved macro can result in
undefined behavior. This rule applies to the following:

• Identifiers or macro names beginning with an underscore
• Identifiers in file scope described in the C Standard Library
• Macro names described in the C Standard Library as being defined in a standard

header.

Message in Report

• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.
• The macro macro_name shall not be defined.

Examples

Defining or Undefining Reserved Identifiers

#undef __LINE__ /* Non-compliant - begins with _ */

#define _Guard_H 1 /* Non-compliant - begins with _ */

#undef _ BUILTIN_sqrt /* Non-compliant - implementation may

5-313

5 MISRA C 2012

 * use _BUILTIN_sqrt for other purposes,

 * e.g. generating a sqrt instruction */

#define defined /* Non-compliant - reserved identifier */

#define errno my_errno /* Non-compliant - library identifier */

#define isneg(x) ((x) < 0) /* Compliant - rule doesn't include

 * future library directions */

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Languages: C90, C99

See Also
MISRA C:2012 Rule 20.4

More About
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-314

 MISRA C:2012 Rule 21.2

MISRA C:2012 Rule 21.2
A reserved identifier or macro name shall not be declared

Description

Rule Definition

A reserved identifier or macro name shall not be declared.

Rationale

The Standard allows implementations to treat reserved identifiers specially. If you reuse
reserved identifiers, you can cause undefined behavior.

Polyspace Specification

• If you define a macro name that corresponds to a standard library macro, object, or
function, rule 21.1 is violated.

• The rule considers tentative definitions as definitions.

Message in Report

Identifier 'XX' shall not be reused.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

5-315

5 MISRA C 2012

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-316

 MISRA C:2012 Rule 21.3

MISRA C:2012 Rule 21.3
The memory allocation and deallocation functions of <stdlib.h> shall not be used

Description

Rule Definition

The memory allocation and deallocation functions of <stdlib.h> shall not be used.

Rationale

Using memory allocation and deallocation routines can cause undefined behavior. For
instance:

• You free memory that you had not allocated dynamically.
• You use a pointer that points to a freed memory location.

Polyspace Specification

If you use names of dynamic heap memory allocation functions for macros, and you
expand the macros in the code, this rule is violated. It is assumed that rule 21.2 is not
violated.

Message in Report

• The macro <name> shall not be used.
• Identifier XX should not be used.

Examples

Use of malloc, calloc, realloc and free

#include <stdlib.h>

5-317

5 MISRA C 2012

static int foo(void);

typedef struct struct_1 {

 int a;

 char c;

} S_1;

static int foo(void) {

 _S_1 * ad_1;

 int * ad_2;

 int * ad_3;

 ad_1 = (S_1*)calloc(100U, sizeof(S_1)); /* Non-compliant */

 ad_2 = malloc(100U * sizeof(int)); /* Non-compliant */

 ad_3 = realloc(ad_3, 60U * sizeof(long)); /* Non-compliant */

 free(ad_1); /* Non-compliant */

 free(ad_2); /* Non-compliant */

 free(ad_3); /* Non-compliant */

 return 1;

}

In this example, the rule is violated when the functions malloc, calloc, realloc and
free are used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 18.7

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

5-318

 MISRA C:2012 Rule 21.3

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-319

5 MISRA C 2012

MISRA C:2012 Rule 21.4
The standard header file <setjmp.h> shall not be used

Description

Rule Definition

The standard header file <setjmp.h> shall not be used.

Rationale

Using setjmp and longjmp, you can bypass normal function call mechanisms and cause
undefined behavior.

Polyspace Specification

If the longjmp function is a macro and the macro is expanded in the code, this rule is
violated. It is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

5-320

 MISRA C:2012 Rule 21.4

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-321

5 MISRA C 2012

MISRA C:2012 Rule 21.5
The standard header file <signal.h> shall not be used

Description

Rule Definition

The standard header file <signal.h> shall not be used.

Rationale

Using signal handling functions can cause implementation-defined and undefined
behavior.

Polyspace Specification

If the signal function is a macro and the macro is expanded in the code, this rule is
violated. It is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

5-322

 MISRA C:2012 Rule 21.5

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-323

5 MISRA C 2012

MISRA C:2012 Rule 21.6
The Standard Library input/output functions shall not be used

Description

Rule Definition

The Standard Library input/output functions shall not be used.

Rationale

This rule applies to the functions that are provided by <stdio.h> and in C99, their
character-wide equivalents provided by <wchar.h>. Using these functions can cause
unspecified, undefined and implementation-defined behavior.

Polyspace Specification

If the Standard Library function is a macro and the macro is expanded in the code, this
rule is violated. It is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”

5-324

 MISRA C:2012 Rule 21.6

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-325

5 MISRA C 2012

MISRA C:2012 Rule 21.7
The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used

Description

Rule Definition

The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.

Rationale

When a string cannot be converted, the behavior of these functions can be undefined.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

5-326

 MISRA C:2012 Rule 21.7

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-327

5 MISRA C 2012

MISRA C:2012 Rule 21.8
The library functions abort, exit, getenv and system of <stdlib.h> shall not be used

Description

Rule Definition

The library functions abort, exit, getenv and system of <stdlib.h> shall not be used.

Rationale

Using these functions can cause undefined and implementation-defined behaviors.

Polyspace Specification

In case the abort, exit, getenv, and system functions are actually macros, and the macros
are expanded in the code, this rule is detected as violated. It is assumed that rule 21.2 is
not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

5-328

 MISRA C:2012 Rule 21.8

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-329

5 MISRA C 2012

MISRA C:2012 Rule 21.9
The library functions bsearch and qsort of <stdlib.h> shall not be used

Description

Rule Definition

The library functions bsearch and qsort of <stdlib.h> shall not be used.

Rationale

The comparison function in these library functions can behave inconsistently when the
elements being compared are equal. Also, the implementation of qsort can be recursive
and place unknown demands on the call stack.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”

5-330

 MISRA C:2012 Rule 21.9

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-331

5 MISRA C 2012

MISRA C:2012 Rule 21.10
The Standard Library time and date functions shall not be used

Description

Rule Definition

The Standard Library time and date functions shall not be used.

Rationale

Using these functions can cause unspecified, undefined and implementation-defined
behavior.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

5-332

 MISRA C:2012 Rule 21.10

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-333

5 MISRA C 2012

MISRA C:2012 Rule 21.11
The standard header file <tgmath.h> shall not be used

Description

Rule Definition

The standard header file <tgmath.h> shall not be used.

Rationale

Using the facilities of this header file can cause undefined behavior.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Examples

Use of Function in tgmath.h

#include <tgmath.h>

float f1,res;

void func(void) {

 res = sqrt(f1); /* Non-compliant */

5-334

 MISRA C:2012 Rule 21.11

}

In this example, the rule is violated when the sqrt macro defined in tgmath.h is used.

Correction — Use Appropriate Function in math.h

For this example, one possible correction is to use the function sqrtf defined in math.h
for float arguments.

#include <math.h>

float f1, res;

void func(void) {

 res = sqrtf(f1);

}

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5-335

5 MISRA C 2012

MISRA C:2012 Rule 21.12
The exception handling features of <fenv.h> should not be used

Description

Rule Definition

The exception handling features of <fenv.h> should not be used.

Rationale

In some cases, the values of the floating-point status flags are unspecified. Attempts to
access them can cause undefined behavior.

Message in Report

The exception handling features of <fenv.h> should not be used

Examples

Use of Features in <fenv.h>

#include <fenv.h>

void func(float x, float y) {

 float z;

 feclearexcept(FE_DIVBYZERO); /* Non-compliant */

 z = x/y;

 if(fetestexcept (FE_DIVBYZERO)) { /* Non-compliant */

 }

 else {

#pragma STDC FENV_ACCESS ON

 z=x*y;

5-336

 MISRA C:2012 Rule 21.12

 if(z>x) {

#pragma STDC FENV_ACCESS OFF

 if(fetestexcept (FE_OVERFLOW)) { /* Non-compliant */

 }

 }

 }

}

In this example, the rule is violated when the identifiers feclearexcept and
fetestexcept, and the macros FE_DIVBYZERO and FE_OVERFLOW are used.

Check Information
Group: Standard libraries
Category: Advisory
AGC Category: Advisory
Language: C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5-337

5 MISRA C 2012

MISRA C:2012 Rule 22.1
All resources obtained dynamically by means of Standard Library functions shall be
explicitly released

Description

Rule Definition

All resources obtained dynamically by means of Standard Library functions shall be
explicitly released.

Rationale

Resources are something that you must return to the system once you have used them.
Examples include dynamically allocated memory and file descriptors.

If you do not release resources explicitly as soon as possible, then a failure can occur due
to exhaustion of resources.

Message in Report

All resources obtained dynamically by means of Standard Library functions shall be
explicitly released.

Examples

Dynamic Memory

#include<stdlib.h>

void performOperation(int);

int func1(int num) {

5-338

 MISRA C:2012 Rule 22.1

 int *arr1 = (int*) malloc(num * sizeof(int));

 return 0;

} /* Non-compliant - memory allocated to arr1 is not released */

int func2(int num) {

 int *arr2 = (int*) malloc(num * sizeof(int));

 free(arr2);

 return 0;

} /* Compliant - memory allocated to arr2 is released */

In this example, the rule is violated when memory dynamically allocated using the
malloc function is not freed using the free function before the end of scope.

File Pointers

#include <stdio.h>

void func1(void) {

 FILE *fp1;

 fp1 = fopen ("data1.txt", "w");

 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w"); /* Non-compliant */

 fprintf (fp1, "!");

 fclose (fp1);

}

void func2(void) {

 FILE *fp2;

 fp2 = fopen ("data1.txt", "w");

 fprintf (fp2, "*");

 fclose(fp2);

 fp2 = fopen ("data2.txt", "w"); /* Compliant */

 fprintf (fp2, "!");

 fclose (fp2);

}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is
explicitly dissociated from the file stream of data1.txt, it is used to access another file
data2.txt. Therefore, the rule 22.1 is violated.

5-339

5 MISRA C 2012

The rule is not violated in func2 because file data1.txt is closed and the file pointer
fp2 is explicitly dissociated from data1.txt before it is reused.

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.13 | MISRA C:2012 Rule 21.3 | MISRA C:2012
Rule 21.6 | Resource leak

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5-340

 MISRA C:2012 Rule 22.2

MISRA C:2012 Rule 22.2
A block of memory shall only be freed if it was allocated by means of a Standard Library
function

Description

Rule Definition

A block of memory shall only be freed if it was allocated by means of a Standard Library
function.

Rationale

The Standard Library functions that allocate memory are malloc, calloc and
realloc.

You free a block of memory when you pass its address to the free or realloc function.
The following causes undefined behavior:

• You free a block of memory that you did not allocate.
• You free a block of memory that have already freed before.

Message in Report

A block of memory shall only be freed if it was allocated by means of a Standard Library
function.

Examples

Memory Not Allocated Is Freed

#include <stdlib.h>

void func1(void) {

5-341

5 MISRA C 2012

 int x=0;

 int *ptr=&x;

 free(ptr);

 /* Non-compliant: ptr is not dynamically allocated */

}

In this example, the rule is violated because the free function operates on a pointer that
does not point to dynamically allocated memory.

Memory Freed Twice

#include <stdlib.h>

void func(int arrSize) {

 int *ptr = (int*) malloc(arrSize* sizeof(int));

 free(ptr); /* Block of memory freed once */

 free(ptr); /* Non-compliant - Block of memory freed twice */

}

In this example, the rule is violated when the free function operates on ptr twice
without a reallocation in between.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
Deallocation of previously deallocated pointer | Invalid free of
pointer | MISRA C:2012 Directive 4.13 | MISRA C:2012 Rule 21.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

5-342

 MISRA C:2012 Rule 22.2

• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5-343

5 MISRA C 2012

MISRA C:2012 Rule 22.3

The same file shall not be open for read and write access at the same time on different
streams

Description

Rule Definition

The same file shall not be open for read and write access at the same time on different
streams.

Rationale

If a file is both written and read via different streams, the behavior can be undefined.

Message in Report

The same file shall not be open for read and write access at the same time on different
streams.

Examples

Opening File That Is Open in Another Stream

#include <stdio.h>

void func(void) {

 FILE *fw = fopen("tmp.txt", "r+");

 FILE *fr = fopen("tmp.txt", "r"); /* Non-compliant: File open in stream fw*/

}

In this example, the rule is violated when the same file tmp.txt is opened in two
streams. The FILE pointers fw and fr point to two different streams here.

5-344

 MISRA C:2012 Rule 22.3

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C

See Also
MISRA C:2012 Rule 21.6 | Resource leak

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5-345

5 MISRA C 2012

MISRA C:2012 Rule 22.4
There shall be no attempt to write to a stream which has been opened as read-only

Description

Rule Definition

There shall be no attempt to write to a stream which has been opened as read-only.

Rationale

The Standard does not specify the behavior if an attempt is made to write to a read-only
stream.

Message in Report

There shall be no attempt to write to a stream which has been opened as read-only.

Examples

Writing to File Opened as Read-Only

#include <stdio.h>

void func1(void) {

 FILE *fp1 = fopen("tmp.txt", "r");

 (void) fprintf(fp1, "Some text"); /* Non-compliant: Read-only stream */

 (void) fclose(fp1);

}

void func2(void) {

 FILE *fp2 = fopen("tmp.txt", "r+");

 (void) fprintf(fp2, "Some text"); /* Compliant */

 (void) fclose(fp2);

}

5-346

 MISRA C:2012 Rule 22.4

In this example, the file stream associated with fp1 is opened as read-only. The rule is
violated when the stream is written.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 21.6 | Writing to read-only resource

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5-347

5 MISRA C 2012

MISRA C:2012 Rule 22.5
A pointer to a FILE object shall not be dereferenced

Description

Rule Definition

A pointer to a FILE object shall not be dereferenced.

Rationale

The Standard states that the address of a FILE object used to control a stream can be
significant. Copying that object might not give the same behavior. This rule ensures that
you cannot perform such a copy.

Directly manipulating a FILE object might be incompatible with its use as a stream
designator.

Message in Report

A pointer to a FILE object shall not be dereferenced

Examples

FILE* Pointer Dereferenced

#include <stdio.h>

void func(void) {

 FILE *pf1;

 FILE *pf2;

 FILE f3;

 pf2 = pf1; /* Compliant */

 f3 = *pf2; /* Non-compliant */

5-348

 MISRA C:2012 Rule 22.5

 pf2->_flags=0; /* Non-compliant */

 }

In this example, the rule is violated when the FILE* pointer pf2 is dereferenced.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 21.6

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5-349

5 MISRA C 2012

MISRA C:2012 Rule 22.6
The value of a pointer to a FILE shall not be used after the associated stream has been
closed

Description

Rule Definition

The value of a pointer to a FILE shall not be used after the associated stream has been
closed.

Rationale

The Standard states that the value of a FILE* pointer is indeterminate after you close
the stream associated with it.

Message in Report

The value of a pointer to a FILE shall not be used after the associated stream has been
closed.

Examples

Use of FILE Pointer After Closing Stream

#include <stdio.h>

void func(void) {

 FILE *fp;

 void *ptr;

 fp = fopen("tmp","w");

 if(fp != NULL) {

 fclose(fp);

 fprintf(fp,"text");

5-350

 MISRA C:2012 Rule 22.6

 }

}

In this example, the stream associated with the FILE* pointer fp is closed with the
fclose function. The rule is violated FILE* pointer fp is used before the stream is re-
opened.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Directive 4.13 | MISRA C:2012 Rule 21.6 | Use of
previously closed resource

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5-351

6

Custom Coding Rules

6 Custom Coding Rules

Group 1: Files

Number Rule Applied Message generated if rule
is violated

Other details

1.1 All source file names
must follow the specified
pattern.

The source file name
“file_name” does not
match the specified
pattern.

Only the base name is
checked. A source file is a
file that is not included.

1.2 All source folder names
must follow the specified
pattern.

The source dir name
“dir_name” does not
match the specified
pattern.

Only the folder name is
checked. A source file is a
file that is not included.

1.3 All include file names
must follow the specified
pattern.

The include file name
“file_name” does not
match the specified
pattern.

Only the base name is
checked. An include file
is a file that is included.

1.4 All include folder names
must follow the specified
pattern.

The include dir name
“dir_name” does not
match the specified
pattern.

Only the folder name is
checked. An include file
is a file that is included.

6-2

 Group 2: Preprocessing

Group 2: Preprocessing

Number Rule Applied Message generated if rule
is violated

Other details

2.1 All macros must follow
the specified pattern.

The macro
“macro_name” does
not match the specified
pattern.

Macro names are checked
before preprocessing.

2.2 All macro parameters
must follow the specified
pattern.

The macro parameter
“param_name” does
not match the specified
pattern.

Macro parameters
are checked before
preprocessing.

6-3

6 Custom Coding Rules

Group 3: Type definitions

Number Rule Applied Message generated if rule
is violated

Other details

3.1 All integer types must
follow the specified
pattern.

The integer type
“type_name” does not
match the specified
pattern.

Applies to integer types
specified by typedef
statements. Does not
apply to enumeration
types. For example:
typedef signed int

int32_t;

3.2 All float types must
follow the specified
pattern.

The float type
“type_name” does not
match the specified
pattern.

Applies to float types
specified by typedef
statements. For example:
typedef float

f32_t;

3.3 All pointer types must
follow the specified
pattern.

The pointer type
“type_name” does not
match the specified
pattern.

Applies to pointer types
specified by typedef
statements. For example:
typedef int* p_int;

3.4 All array types must
follow the specified
pattern.

The array type
“type_name” does not
match the specified
pattern.

Applies to array types
specified by typedef
statements. For example:
typedef int[3]

a_int_3;

3.5 All function pointer
types must follow the
specified pattern.

The function pointer
type “type_name” does
not match the specified
pattern.

Applies to function
pointer types specified
by typedef statements.
For example: typedef
void (*pf_callback)

(int);

6-4

 Group 4: Structures

Group 4: Structures

Number Rule Applied Message generated if rule
is violated

Other details

4.1 All struct tags must
follow the specified
pattern.

The struct tag
“tag_name” does not
match the specified
pattern.

4.2 All struct types must
follow the specified
pattern.

The struct type
“type_name” does not
match the specified
pattern.

This is the typedef
name.

4.3 All struct fields must
follow the specified
pattern.

The struct field
“field_name” does not
match the specified
pattern.

4.4 All struct bit fields
must follow the specified
pattern.

The struct bit field
“field_name” does not
match the specified
pattern.

6-5

6 Custom Coding Rules

Group 5: Classes (C++)

Number Rule Applied Message generated if rule
is violated

Other details

5.1 All class names must
follow the specified
pattern.

The class tag
“tag_name” does not
match the specified
pattern.

5.2 All class types must
follow the specified
pattern.

The class type
“type_name” does not
match the specified
pattern.

This is the typedef
name.

5.3 All data members must
follow the specified
pattern.

The data member
“member_name” does
not match the specified
pattern.

5.4 All function members
must follow the specified
pattern.

The function member
“member_name” does
not match the specified
pattern.

5.5 All static data members
must follow the specified
pattern.

The static data member
“member_name” does
not match the specified
pattern.

5.6 All static function
members must follow
the specified pattern.

The static
function member
“member_name” does
not match the specified
pattern.

5.7 All bitfield members
must follow the specified
pattern.

The bitfield
“member_name” does
not match the specified
pattern.

6-6

 Group 6: Enumerations

Group 6: Enumerations

Number Rule Applied Message generated if rule
is violated

Other details

6.1 All enumeration tags
must follow the specified
pattern.

The enumeration tag
“tag_name” does not
match the specified
pattern.

6.2 All enumeration types
must follow the specified
pattern.

The enumeration type
“type_name” does not
match the specified
pattern.

This is the typedef name.

6.3 All enumeration
constants must follow
the specified pattern.

The enumeration
constant
“constant_name” does
not match the specified
pattern.

6-7

6 Custom Coding Rules

Group 7: Functions

Number Rule Applied Message generated if rule
is violated

Other details

7.1 All global functions
must follow the specified
pattern.

The global function
“function_name” does
not match the specified
pattern.

A global function is a
function with external
linkage.

7.2 All static functions must
follow the specified
pattern.

The static function
“function_name” does
not match the specified
pattern.

A static function is a
function with internal
linkage.

7.3 All function parameters
must follow the specified
pattern.

The function parameter
“param_name” does
not match the specified
pattern.

In C++, applies to non-
member functions.

6-8

 Group 8: Constants

Group 8: Constants

Number Rule Applied Message generated if rule
is violated

Other details

8.1 All global constants
must follow the specified
pattern.

The global constant
“constant_name” does
not match the specified
pattern.

A global constant is a
constant with external
linkage.

8.2 All static constants
must follow the specified
pattern.

The static constant
“constant_name” does
not match the specified
pattern.

A static constant is a
constant with internal
linkage.

8.3 All local constants must
follow the specified
pattern.

The local constant
“constant_name” does
not match the specified
pattern.

A local constant is a
constant without linkage.

8.4 All static local constants
must follow the specified
pattern.

The static local constant
“constant_name” does
not match the specified
pattern.

A static local constant is
a constant declared static
in a function.

6-9

6 Custom Coding Rules

Group 9: Variables

Number Rule Applied Message generated if rule
is violated

Other details

9.1 All global variables
must follow the specified
pattern.

The global variable
“var_name” does not
match the specified
pattern.

A global variable is a
variable with external
linkage.

9.2 All static variables must
follow the specified
pattern.

The static variable
“var_name” does not
match the specified
pattern.

A static variable is a
variable with internal
linkage.

9.3 All local variables must
follow the specified
pattern.

The local variable
“var_name” does not
match the specified
pattern.

A local variable is a
variable without linkage.

9.4 All static local variables
must follow the specified
pattern.

The static local variable
“var_name” does not
match the specified
pattern.

A static local variable is
a variable declared static
in a function.

6-10

 Group 10: Name spaces (C++)

Group 10: Name spaces (C++)

Number Rule Applied Message generated if rule
is violated

Other details

10.1 All names paces must
follow the specified
pattern.

The name space “name
space_name” does not
match the specified
pattern.

6-11

6 Custom Coding Rules

Group 11: Class templates (C++)

Number Rule Applied Message generated if rule
is violated

Other details

11.1 All class templates must
follow the specified
pattern.

The class template
“template_name” does
not match the specified
pattern.

11.2 All class template
parameters must follow
the specified pattern.

The class template
parameter
“param_name” does
not match the specified
pattern.

6-12

 Group 12: Function templates (C++)

Group 12: Function templates (C++)

Number Rule Applied Message generated if rule
is violated

Other details

12.1 All function templates
must follow the specified
pattern.

The function template
“template_name” does
not match the specified
pattern.

Applies to non-member
functions.

12.2 All function template
parameters must follow
the specified pattern.

The function
template parameter
“param_name” does
not match the specified
pattern.

Applies to non-member
functions.

12.3 All function template
members must follow
the specified pattern.

The function
template member
“member_name” does
not match the specified
pattern.

6-13

7

Code Metrics

7 Code Metrics

Comment Density

Ratio of number of comments to number of statements

Description

The metric specifies the ratio of comments to statements expressed as a percentage.

Multi-line comments are counted as one comment. A statement typically ends with
a semi-colon with some exceptions. Exceptions include semi-colons in for loops or
structure field declarations.

The recommended lower limit for this metric is 20. For better readability of your code, try
to place at least one comment for every five statements.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Comment Density Calculation

struct record {

 char name[40];

 long double salary;

 int isEmployed;

};

struct record dataBase[100];

struct record fetch(void);

void remove(int);

void maintenanceRoutines() {

// This function implements

// regular maintenance on an internal database

 int i;

 struct record tempRecord;

7-2

 Comment Density

 for(i=0; i <100; i++) {

 tempRecord = fetch(); // This function fetches a record

 // from the database

 if(tempRecord.isEmployed == 0)

 remove(i); // Remove employee record

 //from the database

 }

}

In this example, the comment density is 38. The calculation is done as follows:

Code Running Total
of Comments

Running Total
of Statements

struct record {

 char name[40];

 long double salary;

 int isEmployed;

};

0 1

struct record dataBase[100];

struct record fetch(void);

void remove(int);

0 4

void maintenanceRoutines() { 0 4
// This function implements

// regular maintenance on an internal database
1 4

int i;

struct record tempRecord;
1 6

for(i=0; i <100; i++) { 1 6
 tempRecord = fetch(); // This

 function fetches a record

 // from the database

2 7

if(tempRecord.isEmployed == 0)

 remove(i);

 // Remove employee record

 //from the database

 }

}

3 8

There are 3 comments and 8 statements. The comment density is 3/8*100 = 38.

7-3

7 Code Metrics

Metric Information
Group: File
Acronym: COMF
HIS Metric: Yes

7-4

 Cyclomatic Complexity

Cyclomatic Complexity
Number of linearly independent paths through source code

Description

This metric specifies the number of linearly independent paths through the source code.

To calculate this metric, add 1 to the number of decision points in your code. A decision
point is a statement that causes your program to branch into two paths. For example, at
an if statement, your program can either enter the if branch or not.

The recommended upper limit for this metric is 10. If the cyclomatic complexity is high,
the code is both difficult to read and can cause more orange checks. Therefore, try to limit
the value of this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with Nested if Statements

int foo(int x,int y)

{

 int flag;

 if (x <= 0)

 /* Decision point 1*/

 flag = 1;

 else

 {

 if (x < y)

 /* Decision point 2*/

 flag = 1;

 else if (x==y)

 /* Decision point 3*/

 flag = 0;

 else

 flag = -1;

7-5

7 Code Metrics

 }

 return flag;

}

In this example, the cyclomatic complexity of foo is 4.

Function with ? Operator

int foo (int x, int y) {

 if((x <0) ||(y < 0))

 /* Decision point 1*/

 return 0;

 else

 return (x > y ? x: y);

 /* Decision point 2*/

}

In this example, the cyclomatic complexity of foo is 3. The ? operator is the second
decision point.

Function with switch Statement

#include <stdio.h>

int foo(int x,int y, int ch)

{

 int val = 0;

 switch(ch) {

 case 1:

 /* Decision point 1*/

 val = x + y;

 break;

 case 2:

 /* Decision point 2*/

 val = x - y;

 break;

 default:

 printf("Invalid choice.");

 }

 return val;

}

In this example, the cyclomatic complexity of foo is 3.

7-6

 Cyclomatic Complexity

Function with Nesting of Different Control-Flow Statements

int foo(int x,int y, int bound)

{

 int count = 0;

 if (x <= y)

 /* Decision point 1*/

 count = 1;

 else

 while(x>y) {

 /* Decision point 2*/

 x--;

 if(count< bound) {

 /* Decision point 3*/

 count++;

 }

 }

 return count;

}

In this example, the cyclomatic complexity of foo is 4.

Metric Information
Group: Function
Acronym: VG
HIS Metric: Yes

7-7

7 Code Metrics

Higher Estimate of Local Variable Size
Total size of all local variables in function

Description

This metric provides a conservative estimate of the total size of local variables in a
function. The metric is the sum of the following sizes in bytes:

• Size of function return value
• Sizes of function parameters
• Sizes of local variables
• Additional padding introduced for memory alignment

Your actual stack usage due to local variables can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory

optimizations. When computing this metric, Polyspace does not consider these
optimizations.

• Your compiler uses additional memory for bookkeeping during a function call. When
computing this metric, Polyspace does not consider this hidden memory usage.

However, the metric provides a reasonable estimate of the stack usage due to local
variables.

To determine the sizes of basic types, the software uses your specifications for Target
processor type (-target). The metric also takes into account #pragma pack directives
in your code.

Examples

All Variables of Same Type

int flag();

7-8

 Higher Estimate of Local Variable Size

int func(int param) {

 int var_1;

 int var_2;

 if (flag()) {

 int var_3;

 int var_4;

 } else {

 int var_5;

 }

}

In this example, assuming 4 bytes for int, the higher estimate of local variable size is 28.
The breakup of the size is shown in this table.

Variable Size (in Bytes) Running Total

Return value 4 4
Parameter param 4 8
Local variables var_1 and
var_2

4+4=8 16

Local variables defined in
the if condition

(4+4)+4=12

The size of variables in
the first branch is eight
bytes. The size in the second
branch is four bytes. The
sum of the two branches is
12 bytes.

28

No padding is introduced for memory alignment because all the variables involved have
the same type.

Variables of Different Types

char func(char param) {

 int var_1;

 char var_2;

 double var_3;

7-9

7 Code Metrics

}

In this example, assuming one byte for char, four bytes for int and eight bytes for
double and four bytes for alignment, the higher estimate of local variable size is 20.
The alignment is usually the word size on your platform. In your Polyspace project,
you specify the alignment through your target processor. For more information, see the
Alignment column in Target processor type (-target). The breakup of the size is shown
in this table.

Variable Size (in Bytes) Running Total

Return value 1 1
Additional padding
introduced before param is
stored

0

No memory alignment is
required because the next
variable param has the
same size.

1

Parameter param 1 2
Additional padding
introduced before var_1 is
stored

2

Memory must be aligned
using padding because
the next variable var_1
requires four bytes. The
storage must start from
a memory address at a
multiple of four.

4

var_1 4 8
Additional padding
introduced before var_2 is
stored

0

No memory alignment is
required because the next
variable var_2 has smaller
size.

8

var_2 1 9
Additional padding
introduced before var_3 is
stored

3 12

7-10

 Higher Estimate of Local Variable Size

Variable Size (in Bytes) Running Total

Memory must be aligned
using padding because the
next variable var_3 has
eight bytes. The storage
must start from a memory
address at a multiple of the
alignment, four bytes.

var_3 8 20

The rules for the amount of padding are:

• If the next variable stored has the same or smaller size, no padding is required.
• If the next variable has a greater size:

• If the variable size is the same as or less than the alignment on the platform, the
amount of padding must be sufficient so that the storage address is a multiple of
its size.

• If the variable size is greater than the alignment on the platform, the amount
of padding must be sufficient so that the storage address is a multiple of the
alignment.

Metric Information
Group: Function
Acronym: LOCAL_VARS_MAX
HIS Metric: No

See Also
Lower Estimate of Local Variable Size

Introduced in R2016b

7-11

7 Code Metrics

Language Scope
Language scope

Description

This metric measures the cost of maintaining or changing a function. It is calculated as:

(N1 + N2)/(n1 + n2)

Here:

• N1 is the number of occurrences of operators.
• N2 is the number of occurrences of operands.
• n1 is the number of distinct operators.
• n2 is the number of distinct operands.

The recommended upper limit for this metric is 4. For lower maintenance cost for a
function, try to enforce an upper limit on this metric. For instance, if the same operand
occurs many times, to change the operand name, you have to make many substitutions.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Language Scope Calculation

int f(int i)

{

 if (i == 1)

 return i;

 else

 return i * g(i-1);

}

In this example:

• N1 = 17.

7-12

 Language Scope

• N2 = 9.
• n1 = 12.

The distinct operators are int, (,), {, if, ==, return, else, *, -, ;, }.
• n2 = 4.

The distinct operands are f, i, 1 and g.

The language scope of f is (17 + 9) / (12 + 4) = 1.8.

Metric Information
Group: Function
Acronym: VOCF
HIS Metric: Yes

7-13

7 Code Metrics

Lower Estimate of Local Variable Size
Total size of local variables in function taking nested scopes into account

Description

This metric provides an optimistic estimate of the total size of local variables in a
function. The metric is the sum of the following sizes in bytes:

• Size of function return value
• Sizes of function parameters
• Sizes of local variables

Suppose that the function has variable definitions in nested scopes as follows:

type func (type param_1, ...) {

 {

 /* Scope 1 */

 type var_1, ...;

 }

 {

 /* Scope 2 */

 type var_2, ...;

 }

}

The software computes the total variable size in each scope and uses whichever total
is greatest. For instance, if a conditional statement has variable definitions, the
software computes the total variable size in each branch, and then uses whichever
total is greatest. If a nested scope itself has further nested scopes, the same process is
repeated for the inner scopes.

A variable defined in a nested scope is not visible outside the scope. Therefore, some
compilers reuse stack space for variables defined in separate scopes. This metric
provides a more accurate estimate of stack usage for such compilers. Otherwise, use
the metric Higher Estimate of Local Variable Size. This metric adds the size of all
local variables, whether or not they are defined in nested scopes.

• Additional padding introduced for memory alignment

Your actual stack usage due to local variables can be different from the metric value.

7-14

 Lower Estimate of Local Variable Size

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory

optimizations. When computing this metric, Polyspace does not consider these
optimizations.

• Your compiler uses additional memory for bookkeeping during a function call. When
computing this metric, Polyspace does not consider this hidden memory usage.

However, the metric provides a reasonable estimate of the stack usage due to local
variables.

To determine the sizes of basic types, the software uses your specifications for Target
processor type (-target). The metric also takes into account #pragma pack directives
in your code.

Examples

All Variables of Same Type

int flag();

int func(int param) {

 int var_1;

 int var_2;

 if (flag()) {

 int var_3;

 int var_4;

 } else {

 int var_5;

 }

}

In this example, assuming four bytes for int, the lower estimate of local variable size is
24. The breakup of the metric is shown in this table.

Variable Size (in Bytes) Running Total

Return value 4 4
Parameter param 4 8

7-15

7 Code Metrics

Variable Size (in Bytes) Running Total

Local variables var_1 and
var_2

4+4=8 16

Local variables defined in
the if condition

max(4+4,4)= 8

The size of variables in
the first branch is eight
bytes. The size in the
second branch is four bytes.
The maximum of the two
branches is eight bytes.

24

No padding is introduced for memory alignment because all the variables involved have
the same type.

Variables of Different Types

char func(char param) {

 int var_1;

 char var_2;

 double var_3;

}

In this example, assuming one byte for char, four bytes for int, eight bytes for double
and four bytes for alignment, the lower estimate of local variable size is 20. The
alignment is usually the word size on your platform. In your Polyspace project, you
specify the alignment through your target processor. For more information, see the
Alignment column in Target processor type (-target). The breakup of the size is shown
in this table.

Variable Size (in Bytes) Running Total

Return value 1 1
Additional padding
introduced before param is
stored

0

No memory alignment is
required because the next
variable param has the
same size.

1

Parameter param 1 2

7-16

 Lower Estimate of Local Variable Size

Variable Size (in Bytes) Running Total

Additional padding
introduced before var_1 is
stored

2

Memory must be aligned
using padding because
the next variable var_1
requires four bytes. The
storage must start from
a memory address at a
multiple of four.

4

var_1 4 8
Additional padding
introduced before var_2 is
stored

0

No memory alignment is
required because the next
variable var_2 has smaller
size.

8

var_2 1 9
Additional padding
introduced before var_3 is
stored

3

Memory must be aligned
using padding because
the next variable var_3
requires eight bytes. The
storage must start from
a memory address at a
multiple of the alignment,
four bytes.

12

var_3 8 20

The rules for the amount of padding are:

• If the next variable stored has the same or smaller size, no padding is required.
• If the next variable has a greater size:

• If the variable size is the same as or less than the alignment on the platform, the
amount of padding must be sufficient so that the storage address is a multiple of
its size.

7-17

7 Code Metrics

• If the variable size is greater than the alignment on the platform, the amount
of padding must be sufficient so that the storage address is a multiple of the
alignment.

Metric Information
Group: Function
Acronym: LOCAL_VARS_MIN
HIS Metric: No

See Also
Higher Estimate of Local Variable Size

Introduced in R2016b

7-18

 Estimated Function Coupling

Estimated Function Coupling
Measure of complexity between levels of call tree

Description

This metric provides an approximate measure of complexity between different levels of
the call tree. The metric is defined as:
number of call occurrences – number of function definitions + 1
If there are more function definitions than function calls, the estimated function coupling
result is negative.

Examples

Same Function Called Multiple Times

void checkBounds(int *);

int getUnboundedValue();

int getBoundedValue(void) {

 int num = getUnboundedValue();

 checkBounds(&num);

 return num;

}

void main() {

 int input1=getBoundedValue(), input2= getBoundedValue(), prod;

 prod = input1 * input2;

 checkBounds(&prod);

}

In this example, there are:

• 5 call occurrences. Both getBoundedValue and checkBounds are called twice and
getUnboundedValue is called once.

• 2 function definitions. main and getBoundedValue are defined.

Therefore, the Estimated function coupling is 5 - 2 + 1 = 4.

7-19

7 Code Metrics

Negative Estimated Function Coupling

int foobar(int a, int b){

 return a+b;

}

int bar(int b){

 return b+2;

}

int foo(int a){

 return a<<2;

}

int main(int x){

 foobar(x,x+2);

 return 0;

}

This example shows how you can get a negative estimated function coupling result. In
this example, you see:

• 1 function call in main.
• 4 defined functions: foobar, bar, foo, and main.

Therefore, the estimated function coupling is 1 - 4 + 1 = -2.

Metric Information
Group: File
Acronym: FCO
HIS Metric: No

See Also
Number of Call Occurrences

7-20

 Number of Call Levels

Number of Call Levels

Maximum depth of nesting of control flow structures

Description

This metric specifies the maximum nesting depth of control flow statements such as if,
switch, for, or while in a function. A function without control-flow statements has a
call level 1.

The recommended upper limit for this metric is 4. For better readability of your code, try
to enforce an upper limit for this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with Nested if Statements

int foo(int x,int y)

{

 int flag = 0;

 if (x <= 0)

 /* Call level 1*/

 flag = 1;

 else

 {

 if (x <= y)

 /* Call level 2*/

 flag = 1;

 else

 flag = -1;

 }

 return flag;

}

In this example, the number of call levels of foo is 2.

7-21

7 Code Metrics

Function with Nesting of Different Control-Flow Statements

int foo(int x,int y, int bound)

{

 int count = 0;

 if (x <= y)

 /* Call level 1*/

 count = 1;

 else

 while(x>y) {

 /* Call level 2*/

 x--;

 if(count< bound) {

 /* Call level 3*/

 count++;

 }

 }

 return count;

}

In this example, the number of call levels of foo is 3.

Metric Information
Group: Function
Acronym: LEVEL
HIS Metric: Yes

7-22

 Number of Call Occurrences

Number of Call Occurrences
Number of calls in function body

Description

This metric specifies the number of function calls in the body of a function.

Calls through a function pointer are not counted. Calls in unreachable code and calls to
standard library functions are counted.

Examples

Same Function Called Multiple Times

int func1(void);

int func2(void);

int foo() {

 return (func1() + func1()*func1() + 2*func2());

}

In this example, the number of call occurrences in foo is 4.

Function Called in a Loop

#include<stdio.h>

void fillArraySize10(int *arr) {

 for(int i=0; i<10; i++)

 arr[i]=getVal();

}

int getVal(void) {

 int val;

 printf("Enter a value:");

 scanf("%d", &val);

 return val;

7-23

7 Code Metrics

}

In this example, the number of call occurrences in fillArraySize10 is 1.

Recursive Function

#include <stdio.h>

void main() {

 int count;

 printf("How many numbers ?");

 scanf("%d",&count);

 fibonacci(count);

}

int fibonacci(int num)

{

 if (num == 0)

 return 0;

 else if (num == 1)

 return 1;

 else

 return (fibonacci(num-1) + fibonacci(num-2));

}

In this example, the number of call occurrences in fibonacci is 2.

Metric Information
Group: Function
Acronym: NCALLS
HIS Metric: No

See Also
Number of Called Functions

7-24

 Number of Called Functions

Number of Called Functions
Number of callees of a function

Description

This metric specifies the number of callees of a function.

Calls through a function pointer are not counted. Calls in unreachable code and calls to
standard library functions are counted. For C++ templates, the first instantiation of the
template is used to calculate this metric.

The recommended upper limit for this metric is 7. For more self-contained code, try to
enforce an upper limit on this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Same Function Called Multiple Times

int func1(void);

int func2(void);

int foo() {

 return (func1() + func1()*func1() + 2*func2());

}

In this example, the number of called functions in foo is 2. The called functions are
func1 and func2.

Recursive Function

#include <stdio.h>

void main() {

 int count;

 printf("How many numbers ?");

7-25

7 Code Metrics

 scanf("%d",&count);

 fibonacci(count);

}

int fibonacci(int num)

{

 if (num == 0)

 return 0;

 else if (num == 1)

 return 1;

 else

 return (fibonacci(num-1) + fibonacci(num-2));

}

In this example, the number of called functions in fibonacci is 1. The called function is
fibonacci itself.

Metric Information
Group: Function
Acronym: CALLS
HIS Metric: Yes

See Also
Number of Call Occurrences | Number of Calling Functions

7-26

 Number of Calling Functions

Number of Calling Functions
Number of distinct callers of a function

Description

This metric measures the number of distinct callers of a function.

Calls through a function pointer are not counted. Calls in unreachable code are counted.
Even if a caller calls a function more than once, it is counted only once when this metric
is calculated. For C++ templates, the first instantiation of the template is used to
calculate this metric.

The recommended upper limit for this metric is 5. For more self-contained code, try to
enforce an upper limit on this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Same Function Calling a Function Multiple Times

#include <stdio.h>

int getVal() {

 int myVal;

 printf("Enter a value:");

 scanf("%d", &myVal);

 return myVal;

}

int func() {

 int val=getVal();

 if(val<0)

 return 0;

 else

 return val;

}

7-27

7 Code Metrics

int func2() {

 int val=getVal();

 while(val<0)

 val=getVal();

 return val;

}

In this example, the number of calling functions for getVal is 2. The calling functions
are func and func2.

Recursive Function

#include <stdio.h>

void main() {

 int count;

 printf("How many numbers ?");

 scanf("%d",&count);

 fibonacci(count);

}

int fibonacci(int num)

{

 if (num == 0)

 return 0;

 else if (num == 1)

 return 1;

 else

 return (fibonacci(num-1) + fibonacci(num-2));

}

In this example, the number of calling functions for fibonacci is 2. The calling
functions are main and fibonacci itself.

Metric Information
Group: Function
Acronym: CALLING
HIS Metric: Yes

See Also
Number of Called Functions

7-28

 Number of Direct Recursions

Number of Direct Recursions
Number of instances of a function calling itself directly

Description

This metric specifies the number of direct recursions in your project.

A direct recursion is a recursion where a function calls itself in its own body. If indirect
recursions do not occur, the number of direct recursions is equal to the number of
recursive functions.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding
available stack space, do not use recursions in your code. To detect use of recursions,
check for violations of MISRA C:2012 Rule 17.2.

Note: This metric is available only in the Polyspace Metrics web interface.

Examples

Direct Recursion

int getVal(void);

void main() {

 int count = getVal(), total;

 assert(count > 0 && count <100);

 total = sum(count);

}

int sum(int val) {

 if(val<0)

 return 0;

 else

 return (val + sum(val-1));

}

In this example, the number of direct recursions is 1.

7-29

7 Code Metrics

Metric Information
Group: Project
Acronym: AP_CG_DIRECT_CYCLE
HIS Metric: Yes

See Also

Polyspace Results
MISRA C:2012 Rule 17.2

7-30

 Number of Executable Lines

Number of Executable Lines
Number of executable lines in function body

Description

This metric measures the number of executable lines in a function body. When
calculating the value of this metric, Polyspace excludes declarations without static
initializers, comments, blank lines, braces or preprocessing directives.

If the function body contains a #include directive, the included file source code is also
calculated as part of this metric.

This metric is not calculated for C++ templates.

Examples

Function with Declarations, Braces and Comments

void func(int);

int getSign(int arg) {

 int sign;

 if(arg<0) {

 sign=-1;

 func(-arg);

 /* func takes positive arguments */

 }

 else if(arg==0)

 sign=0;

 else {

 sign=1;

 func(arg);

 }

 return sign;

}

In this example, the number of executable lines of getSign is 9. The calculation
excludes:

7-31

7 Code Metrics

• The declaration int sign;.
• The comment /* ... */.
• The two lines with braces only.

Metric Information
Group: Function
Acronym: FXLN
HIS Metric: No

See Also
Number of Lines Within Body | Number of Instructions

7-32

 Number of Files

Number of Files
Number of source files

Description

This metric calculates the number of source files in your project.

Note: This metric is available only in the Polyspace Metrics web interface.

Metric Information
Group: Project
Acronym: FILES
HIS Metric: No

See Also
Number of Header Files

7-33

7 Code Metrics

Number of Function Parameters
Number of function arguments

Description

This metric measures the number of function arguments.

If ellipsis is used to denote variable number of arguments, when calculating this metric,
the ellipsis is not counted.

The recommended upper limit for this metric is 5. For less dependency between functions
and fewer side effects, try to enforce an upper limit on this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with Fixed Arguments

int initializeArray(int* arr, int size) {

}

In this example, initializeArray has two parameters.

Function with Type Definition in Arguments

int getValueInLoc(struct {int* arr; int size;}myArray, int loc) {

}

In this example, getValueInLoc has two parameters.

Function with Variable Arguments

double average (int num, ...)

{

 va_list arg;

7-34

 Number of Function Parameters

 double sum = 0;

 va_start (arg, num);

 for (int x = 0; x < num; x++)

 {

 sum += va_arg (arg, double);

 }

 va_end (arg);

 return sum / num;

}

In this example, average has one parameter. The ellipsis denoting variable number of
arguments is not counted.

Metric Information
Group: Function
Acronym: PARAM
HIS Metric: Yes

7-35

7 Code Metrics

Number of Goto Statements
Number of goto statements

Description

This metric measures the number of goto statements in a function.

break and continue statements are not counted.

The recommended upper limit on this metric is 0. For better readability of your code,
avoid goto statements in your code. To detect use of goto statements, check for
violations of MISRA C:2012 Rule 15.1.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with goto Statements

#define SIZE 10

int initialize(int **arr, int loc);

void printString(char *);

void printErrorMessage(void);

void printExecutionMessage(void);

int main()

{

 int *arrayOfStrings[SIZE],len[SIZE],i;

 for (i = 0; i < SIZE; i++)

 {

 len[i] = initialize(arrayOfStrings,i);

 }

 for (i = 0; i < SIZE; i++)

 {

 if(len[i] == 0)

 goto emptyString;

 else

7-36

 Number of Goto Statements

 goto nonEmptyString;

 loop: printExecutionMessage();

 }

emptyString:

 printErrorMessage();

 goto loop;

nonEmptyString:

 printString(arrayOfStrings[i]);

 goto loop;

}

In this example, the function main has 4 goto statements.

Metric Information
Group: Function
Acronym: GOTO
HIS Metric: Yes

7-37

7 Code Metrics

Number of Header Files
Number of included header files

Description

This metric measures the number of header files in the project. Both directly and
indirectly included header files are counted. Polyspace internal header files and header
files included by those files are also counted.

Note: This metric is available only in the Polyspace Metrics interface.

Metric Information
Group: Project
Acronym: INCLUDES
HIS Metric: No

See Also
Number of Files

7-38

 Number of Instructions

Number of Instructions
Number of instructions per function

Description

This metric measures the number of instructions in a function body.

The metric is calculated using the following rules:

• A simple statement ending with a ; is one instruction.

If the statement is empty, it does not count as an instruction.
• A variable declaration counts as one instruction only if the variable is also initialized.
• Control flow statements such as if, for, break, goto, return, switch, while, do-

while count as one instruction.
• The following do not count as instructions by themselves:

• Beginning of a block of code

For instance, the following counts as one instruction:

{

 var = 1;

}

• Labels

For instance, the following counts as two instructions. The case labels do not
count as instructions.

switch (1) { // Instruction 1: switch

 case 0:

 case 1:

 case 2:

 default:

 break; // Instruction 2: break

 }

The recommended upper limit for this metric is 50. For more modular code, try to enforce
an upper limit for this metric.

7-39

7 Code Metrics

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Calculation of Number of Instructions

int func(int* arr, int size) {

 int i, countPos=0, countNeg=0, countZero = 0;

 for(i=0; i<size; i++) {

 if(arr[i] >0)

 countPos++;

 else if(arr[i] ==0)

 countZero++;

 else

 countNeg++;

 }

}

In this example, the number of instructions in func is 9. The instructions are:

1 countPos=0

2 countNeg=0

3 countZero=0

4 for(i=0;i<size;i++) { ... }

5 if(arr[i] >=0)

6 countPos++

7 else if(arr[i]==0)

The ending else is counted as part of the if-else instruction.
8 countZero++

9 countNeg++

Note: This metric is different from the number of executable lines. For instance:

• for(i=0;i<size;i++) has 1 instruction and 1 executable line.
• The following code has 1 instruction but 3 executable lines.

7-40

 Number of Instructions

for(i=0;

 i<size;

 i++)

Metric Information
Group: Function
Acronym: STMT
HIS Metric: Yes

7-41

7 Code Metrics

Number of Lines
Total number of lines in a file

Description

This metric calculates the number of lines in a file. When calculating the value of this
metric, Polyspace includes comments and blank lines.

Metric Information
Group: File
Acronym: TOTAL_LINES
HIS Metric: No

See Also
Number of Lines Without Comment

7-42

 Number of Lines Within Body

Number of Lines Within Body
Number of lines in function body

Description

This metric calculates the number of lines in function body. When calculating the value
of this metric, Polyspace includes declarations, comments, blank lines, braces and
preprocessing directives.

If the function body contains a #include directive, the included file source code is also
calculated as part of this metric.

This metric is not calculated for C++ templates.

Examples

Function with Declarations, Braces and Comments

void func(int);

int getSign(int arg) {

 int sign;

 if(arg<0) {

 sign=-1;

 func(-arg);

 /* func takes positive arguments */

 }

 else if(arg==0)

 sign=0;

 else {

 sign=1;

 func(arg);

 }

 return sign;

}

In this example, the number of executable lines of getSign is 13. The calculation
includes:

7-43

7 Code Metrics

• The declaration int sign;.
• The comment /* ... */.
• The two lines with braces only.

Metric Information
Group: Function
Acronym: FLIN
HIS Metric: No

See Also
Number of Executable Lines

7-44

 Number of Lines Without Comment

Number of Lines Without Comment
Number of lines of code excluding comments

Description

This metric calculates the number of lines in a file. When calculating the value of this
metric, Polyspace excludes comments and blank lines.

Metric Information
Group: File
Acronym: LINES_WITHOUT_CMT
HIS Metric: No

See Also
Number of Lines

7-45

7 Code Metrics

Number of Paths
Estimated static path count

Description

This metric measures the number of paths through your source code.

If goto statements are present in your code, Polyspace cannot calculate the number of
paths. The software displays a metric value of -1.

The recommended upper limit for this metric is 80. If the number of paths is high, the
code is difficult to read and can cause more orange checks. Try to limit the value of this
metric.

To enforce limits on metrics, see “Review Code Metrics”.

Computation Details

The number of paths is calculated according to these rules:

• If the statements in a function do not break the control flow, the number of paths is
one.

Even an empty statement such as ; or empty block such as {} counts as one path.
• The number of paths for a control flow statement is calculated as follows:

• if-else if-else: The number of paths is the sum of paths calculated in the if
block, each else if block, and the concluding else block. When the concluding
else block is omitted, the path count is increased by 1.

For instance, the statement if(..) {} else if(..) {} else {} counts as
three paths. The statement if() {} counts as two paths, one for the if block and
one for the omitted else block.

• switch-case: Every case with break statement adds one to the path count. The
default statement counts as one path, even if it is omitted.

For instance, the statement switch (var) { case 1: .. break; case
2: .. break; default: .. } counts as three paths.

7-46

 Number of Paths

• for, while, and do-while: The number of paths is equal to the number of paths
in the loop body + 1.

For instance, the statement while(0) {;} counts as two paths.
• If more than one control flow statement are present in a sequence, the number of

paths is the product of the path count for each control flow statement.

For instance, if a function has three for loops and two if-else statements, the
number of paths is 2 × 2 × 2 × 2 × 2 = 32.

If many control flow statements are present in a function, the number of paths can
be large. Nested control flow statements reduce the number of paths at the cost of
increasing the depth of nesting. For an example, see “Function with Nested Control
Flow Statements” on page 7-48.

Examples

Function with One Path

void func(int ch) {

 switch (ch)

 {

 case 1:

 case 2:

 case 3:

 case 4:

 default:

 }

}

In this example, func has one path.

Function with Control Flow Statement Causing Multiple Paths

void func(int ch) {

 switch (ch)

 {

 case 1:

 break;

7-47

7 Code Metrics

 case 2:

 break;

 case 3:

 break;

 case 4:

 break;

 default:

 }

}

In this example, func has five paths. Apart from the path that goes through the cases
and default, each break causes the creation of a new path.

Function with Nested Control Flow Statements

void func()

{

 int i = 0, j = 0, k = 0;

 for (i=0; i<10; i++)

 {

 for (j=0; j<10; j++)

 {

 for (k=0; k<10; k++)

 {

 if (i < 2)

 ;

 else

 {

 if (i > 5)

 ;

 else

 ;

 }

 }

 }

 }

}

In this example, func has six paths. The number is calculated as follows:

• The innermost if-else block counts as two paths.
• The outer if-else block counts as three paths, one path for the if block and the

previous two paths for the else block.

7-48

 Number of Paths

• The innermost for loop counts as four paths, one path for the loop and the previous
three paths for the if-else blocks.

• The next two outer loops add one path each.

Therefore, the number of paths in func is six.

Metric Information
Group: Function
Acronym: PATH
HIS Metric: Yes

7-49

7 Code Metrics

Number of Return Statements
Number of return statements in a function

Description

This metric measures the number of return statements in a function.

The recommended upper limit for this metric is 1. If one return statement is present,
when reading the code, you can easily identify what the function returns.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with Return Points

int getSign (int arg) {

 if(arg <0)

 return -1;

 else if(arg > 0)

 return 1;

 return 0;

}

In this example, getSign has 3 return statements.

Metric Information
Group: Function
Acronym: RETURN
HIS Metric: Yes

7-50

 Number of Recursions

Number of Recursions
Number of call graph cycles over one or more functions

Description
This metric specifies the number of recursions in your project. Even if more than one
function is involved in one recursive cycle, the number of recursions is counted as one.

Calls through a function pointer are not considered.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding
available stack space, do not use recursions in your code. To detect use of recursions,
check for violations of MISRA C:2012 Rule 17.2.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Direct Recursion

int getVal(void);

void main() {

 int count = getVal(), total;

 assert(count > 0 && count <100);

 total = sum(count);

}

int sum(int val) {

 if(val<0)

 return 0;

 else

 return (val + sum(val-1));

}

In this example, the number of recursions is 1.

A direct recursion is a recursion where a function calls itself in its own body. For direct
recursions, the number of recursions is equal to the number of recursive functions.

7-51

7 Code Metrics

Indirect Recursion with One Call Graph Cycle

volatile int signal;

void operation1() {

 int stop = signal%2;

 if(!stop)

 operation2();

}

void operation2() {

 operation1();

}

void main() {

 operation1();

}

In this example, the number of recursions is 1. Although two functions operation1 and
operation2 indirectly call themselves, they are involved in the same call graph cycle
operation1 → operation2 → operation1.

An indirect function is a recursion where a function calls itself through other functions.
For indirect recursions, the number of recursions can be different from the number of
recursive functions.

Indirect Recursion with Two Call Graph Cycles

volatile int signal;

void operation1() {

 int stop = signal%3;

 if(stop==1)

 operation2();

 else if(stop==2)

 operation3();

}

void operation2() {

 operation1();

}

void operation3() {

7-52

 Number of Recursions

 operation3();

}

void main() {

 operation1();

}

In this example, the number of recursions is 2.

There are two call graph cycles:

• operation1 → operation2 → operation1
• operation1 → operation3 → operation1

Same Function Called in Direct and Indirect Recursion

volatile int signal;

void operation1() {

 int stop = signal%3;

 if(stop==1)

 operation1();

 else if(stop==2)

 operation2();

}

void operation2() {

 operation1();

}

void main() {

 operation1();

}

In this example, the number of call graph cycles is 1.

If the same function calls itself both directly and indirectly, the two cycles are counted as
1.

Metric Information
Group: Project

7-53

7 Code Metrics

Acronym: AP_CG_CYCLE
HIS Metric: Yes

See Also

Polyspace Results
MISRA C:2012 Rule 17.2

7-54

8

Polyspace Report Components —
Alphabetical List

8 Polyspace Report Components — Alphabetical List

Acronym Definitions
Create table of Polyspace acronyms used in report and their full forms

Description

This component creates a table containing the acronyms used in the report and their full
forms. Aronyms are used for Polyspace Code Prover checks and Polyspace result status.

Related Examples
• “Customize Existing Report Template”

8-2

 Call Hierarchy

Call Hierarchy
Create table showing call graph in source code

Description

This component creates a table showing the call hierarchy in your source code. For each
function call in your source code, the table displays the following information:

• Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the
hierarchy. Beginning from main or an entry point, there are three function calls
leading to the current call.

• File containing the function call.

In addition, the line and column is also displayed.
• File containing the function definition.

In addition, the line and column where the function definition begins is also
displayed.

In addition, the table also displays uncalled functions.

This table captures the information available on the Call Hierarchy pane in the
Polyspace user interface.

Related Examples
• “Customize Existing Report Template”

8-3

8 Polyspace Report Components — Alphabetical List

Code and Verification Information
Create table of verification times and code characteristics

Description

This component creates tables containing verification times and code characteristics such
as number of lines.

Properties

Include Verification Time Information

If you select this option, the report contains verification times broken down by phase.

• For Polyspace Bug Finder, the phases are compilation, pass0, pass1, etc.
• For Polyspace Code Prover, the phases are compilation, global, function, etc.

Include Code Details

If you select this option, the report contains the following code characteristics:

• Number of files
• Number of lines
• Number of lines without comment

Related Examples
• “Customize Existing Report Template”

8-4

 Code Metrics Details

Code Metrics Details
Create table of Polyspace metrics broken down by file and function

Description

This component creates a table containing metrics from a Polyspace project. The metrics
appear broken down by file and function.

Properties

Project Metrics

If you select this option, the report contains the following metrics about the project:

• Number of direct recursions
• Number of files
• Number of headers
• Number of protected and unprotected shared variables

File Metrics

If you select this option, the report contains the following metrics about each file in the
project:

• Estimated function coupling
• Lines without comment
• Comment density
• Total lines

Function Metrics

If you select this option, the report contains the following metrics about each function in
the project:

8-5

8 Polyspace Report Components — Alphabetical List

• Cyclomatic complexity
• Language scope
• Lower and higher estimates of local variable size
• Number of lines within body
• Number of executable lines
• Number of goto statements
• Number of call levels
• Number of called functions
• Number of call occurrences
• Number of function parameters
• Number of paths
• Number of return statements
• Number of instructions
• Number of calling functions

Related Examples
• “Customize Existing Report Template”

8-6

 Code Metrics Summary

Code Metrics Summary
Create table of Polyspace metrics

Description

This component creates a table containing metrics from a Polyspace project. The metrics
are the same as those displayed under Code Metrics Details. However, the file and
function metrics are not broken down by individual files and functions. Instead, the table
provides the minimum and maximum value of a file metric over all files and a function
metric over all functions.

Related Examples
• “Customize Existing Report Template”

8-7

8 Polyspace Report Components — Alphabetical List

Code Verification Summary
Create table of Polyspace analysis results

Description

This component creates tables containing the following results:

• Number of results
• Number of coding rule violations for each coding rule type such as MISRA C
• Number of defects, for Polyspace Bug Finder results
• Number of checks of each color, for Polyspace Code Prover results
• Whether the project passed or failed the software quality objective

Properties

Include Checks from Polyspace Standard Library Stub Functions

Unless you deselect this option, the tables contain Polyspace Code Prover checks that
appear in Polyspace stubs for the standard library functions.

Related Examples
• “Customize Existing Report Template”

8-8

 Coding Rules Details

Coding Rules Details

Create table of coding rule violations broken down by file

Description

This component creates tables containing coding rule violations broken down by each
file in the Polyspace project. For each rule violation, the table contains the following
information:

• Rule number
• Rule description
• Function containing the violation
• Line and column number
• Review information such as classification, status and comments

Properties

Select Coding Rules Type

Using this option, you can choose which coding rule violations to display. You can display
violations for the following set of coding rules:

• MISRA C rules
• MISRA AC AGC rules
• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

Display by

Using this option, you can break down the display of coding rule violations by file.

8-9

8 Polyspace Report Components — Alphabetical List

Related Examples
• “Customize Existing Report Template”

8-10

 Coding Rules Summary

Coding Rules Summary
Create table with number of coding rule violations

Description

This component creates a table containing the number of coding rule violations. You can
choose whether to break this information down by rule number or file.

Properties

Select Coding Rules Type

Using this option, you can choose which coding rule violations to display. You can display
violations for the following set of coding rules:

• MISRA C rules
• MISRA AC AGC rules
• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

Include Files/Rules with No Problems Detected

If you select this option, the table displays:

• Files that do not contain coding rule violations
• Rules that your code does not violate

Display by

Using this option, you can break down the display of coding rule violations by:

• Rule number

8-11

8 Polyspace Report Components — Alphabetical List

• File

Related Examples
• “Customize Existing Report Template”

8-12

 Configuration Parameters

Configuration Parameters
Create table of analysis options and coding rules

Description

This component creates two tables:

• Polyspace Settings: The analysis options that you used to obtain your results. The
table lists command-line version of the options along with their values.

• Coding Rules Configuration: The coding rules whose violations you checked for. The
table lists the rule number, rule description and other information about the rules.

Related Examples
• “Customize Existing Report Template”

8-13

8 Polyspace Report Components — Alphabetical List

Defects Summary
Create table of Polyspace Bug Finder defects

Description

This component creates a table of Polyspace Bug Finder defects. From this table, you can
see the number of defects of each type.

Properties

Include Checkers with No Defects Detected

If you select this option, the table includes all defect types that Polyspace Bug Finder can
detect, including those that do not occur in your code.

Related Examples
• “Customize Existing Report Template”

8-14

 Global Variable Checks

Global Variable Checks
Create table of Polyspace Code Prover global variables

Description

This component creates a table of Polyspace Code Prover global variables. From this
table, you can see the number of global variables of each type.

Related Examples
• “Customize Existing Report Template”

8-15

8 Polyspace Report Components — Alphabetical List

Recursive Functions
Create table of recursive functions

Description

This component creates a table containing the recursive functions in your source code.
For each recursive function, the table lists its immediate caller.

Related Examples
• “Customize Existing Report Template”

8-16

 Report Customization (Filtering)

Report Customization (Filtering)
Create filters that apply to your Polyspace reports

Description

This component allows you to filter unwanted information from existing Polyspace report
templates. To apply global filters, place this component immediately below the node
representing the report name.

Properties

Code Metrics Filters

The properties in table below apply to the inclusion of code metrics in your report.

Property Purpose User Action

Include Project Metrics Choose whether to include
metrics about your
Polyspace project.

Select the check box to
include project metrics.

Project metrics to
include

Specify project metrics to
include or exclude from
report.

Enter a regular MATLAB
expression.

Include File Metrics Choose whether to include
per file metrics in report.

Select the check box to
include per file metrics.

File Metrics > Files to
include

Specify files to include or
exclude when reporting file
metrics.

Enter a regular MATLAB
expression.

File metrics to include Specify file metrics to
include or exclude from
report.

Enter a regular MATLAB
expression.

Include Function Metrics Choose whether to include
per function metrics in
report.

Select the check box to
include per function metrics.

8-17

8 Polyspace Report Components — Alphabetical List

Property Purpose User Action

Function Metrics > Files
to include

Specify files to include or
exclude when reporting
function metrics.

Enter a regular MATLAB
expression.

Functions to include Specify functions to include
or exclude when reporting
function metrics.

Enter a regular MATLAB
expression.

Function metrics to
include

Specify function metrics
to include or exclude from
report.

Enter a regular MATLAB
expression.

Coding Rules Filters

The properties in table below apply to the inclusion of coding rule violations in your
report.

Property Purpose User Action

Files to include Specify files to include or
exclude when reporting
coding rule violations.

Enter a regular MATLAB
expression.

Coding rule numbers to
include

Specify coding rules to
include or exclude when
reporting coding rule
violations.

Enter a regular MATLAB
expression.

Classifications to include Specify classifications to
include or exclude when
reporting coding rule
violations.

Enter a regular MATLAB
expression.

Status types to include Specify statuses to include
or exclude when reporting
coding rule violations.

Enter a regular MATLAB
expression.

Run-time Check Filters

The properties in table below apply to the inclusion of Polyspace Code Prover checks in
your report.

8-18

 Report Customization (Filtering)

Property Purpose

Red Checks Specify whether to include red checks in
your report. Red checks indicate proven
run-time errors.

Gray Checks Specify whether to include gray checks
in your report. Gray checks indicate
unreachable code.

Orange Checks Specify whether to include orange checks
in your report. Orange checks indicate
possible run-time errors.

Green Checks Specify whether to include green checks in
your report. Green checks indicate that an
operation does not contain a specific run-
time error.

Inspection Point Checks Specify whether to include inspection point
checks in your report. These checks allow
an user to find the values that a variable
can take at a certain point in the code.

Unreachable Functions Specify whether to include unreachable
functions in your report.

Advanced Filters

The properties in table below apply to the inclusion of metrics, coding rule violations and
Polyspace Code Prover checks in your report.

Property Purpose User Action

Justification status Choose whether to report
only justified checks, only
unjustified checks or all
checks.

Choose an option from the
dropdown list.

Files to include Specify files to include or
exclude from your report.

Enter a regular MATLAB
expression.

Check types to include Specify Polyspace Code
Prover checks to include in
your report.

Enter a regular MATLAB
expression.

8-19

8 Polyspace Report Components — Alphabetical List

Property Purpose User Action

Function names to
include

Specify functions to include
or exclude from your report.

Enter a regular MATLAB
expression.

Classification types to
include

Specify classifications to
include or exclude from your
report.

Enter a regular MATLAB
expression.

Status types to include Specify statuses to include
or exclude from your report.

Enter a regular MATLAB
expression.

Comments to include Specify comments to include
or exclude from your report.

Enter a regular MATLAB
expression.

Related Examples
• “Customize Existing Report Template”

More About
• “Regular Expressions”

8-20

 Run-time Checks Details Ordered by Color/File

Run-time Checks Details Ordered by Color/File
Create overrides for global filters in Polyspace reports

Description

This component adds detailed information about the run-time checks to your report. This
component can also be used to override global filters in specific chapters of your report.
Use the following workflow when using filters in your report:

1 To create filters that apply to all chapters of your report, use the Report
Customization (Filtering) component. For more information, see Report
Customization (Filtering).

2 To override some of the filters in individual chapters, use the Run-time Checks
Details Ordered by Color/File component. Select the Override Global Report
filter box.

Properties

Categories To Include

The properties in table below apply to the inclusion of Polyspace Code Prover checks in
your report.

Property Purpose

Red Checks Specify whether to include red checks in
your report. Red checks indicate proven
run-time errors.

Gray Checks Specify whether to include gray checks
in your report. Gray checks indicate
unreachable code.

Orange Checks Specify whether to include orange checks
in your report. Orange checks indicate
possible run-time errors.

8-21

8 Polyspace Report Components — Alphabetical List

Property Purpose

Green Checks Specify whether to include green checks in
your report. Green checks indicate that an
operation does not contain a specific run-
time error.

Inspection Point Checks Specify whether to include inspection point
checks in your report. These checks allow
an user to find the values that a variable
can take at a certain point in the code.

Unreachable Functions Specify whether to include unreachable
functions in your report.

Advanced Filters

The properties in table below apply to the inclusion of metrics, coding rule violations and
Polyspace Code Prover checks in your report.

Property Purpose User Action

Justification status Choose whether to report
only justified checks, only
unjustified checks or all
checks.

Choose an option from the
dropdown list.

Files to include Specify files to include or
exclude from your report.

Enter a regular MATLAB
expression.

Check types to include Specify Polyspace Code
Prover checks to include in
your report.

Enter a regular MATLAB
expression.

Function names to
include

Specify functions to include
or exclude from your report.

Enter a regular MATLAB
expression.

Classification types to
include

Specify classifications to
include or exclude from your
report.

Enter a regular MATLAB
expression.

Status types to include Specify statuses to include
or exclude from your report.

Enter a regular MATLAB
expression.

Comments to include Specify comments to include
or exclude from your report.

Enter a regular MATLAB
expression.

8-22

 Run-time Checks Details Ordered by Color/File

Related Examples
• “Customize Existing Report Template”

8-23

8 Polyspace Report Components — Alphabetical List

Run-time Checks Details Ordered by Review
Information
Create table with Polyspace Code Prover checks ordered by review information

Description

This component creates tables displaying the Polyspace Code Prover checks in your code.
All checks with same combination of Classification and Status appear in the same
table.

Related Examples
• “Customize Existing Report Template”

8-24

 Run-time Checks Summary Ordered by File

Run-time Checks Summary Ordered by File
Create table with Polyspace Code Prover checks ordered by file

Description

This component creates a table displaying the number of Polyspace Code Prover checks
per file in your code.

Properties

Sort the data

Use this option to sort the rows in the table alphabetically by filename or by percentage
of unproven code.

Display as

Use this option to display the number of checks in a table or in bar charts.

Display ratio of checks in a file

Select this option to display the number of checks of a certain color as a ratio of total
number of checks in the file.

Include checks from Polyspace standard library stub functions

Select this option to include the checks from Polyspace standard library stub functions in
your display.

Related Examples
• “Customize Existing Report Template”

8-25

8 Polyspace Report Components — Alphabetical List

Software Quality Objectives - Coding Rules
Summary
Create table of coding rule violations in results downloaded from Polyspace Metrics

Description

This component creates a table containing coding rule violations in results downloaded
from Polyspace Metrics.

Related Examples
• “Customize Existing Report Template”

8-26

 Software Quality Objectives - Run-time Checks Summary

Software Quality Objectives - Run-time Checks
Summary
Create table of run-time check distribution in results downloaded from Polyspace Metrics

Description

This component creates a table containing the distribution of run-time checks in results
downloaded from Polyspace Metrics.

Related Examples
• “Customize Existing Report Template”

8-27

8 Polyspace Report Components — Alphabetical List

Summary By File
Create table showing summary of Polyspace results by file

Description

This component creates a table showing a breakdown of Polyspace results by file.

Related Examples
• “Customize Existing Report Template”

8-28

 Variable Access

Variable Access
Create table showing global variable access in source code

Description

This component creates a table showing the global variable access in your source code.
For each global variable, the table displays the following information:

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.
• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table

displays the following information:

• File and function containing the operation in the form
file_name.function_name.

The entry for each read or write operation is denoted by ||. Write operations are
denoted by < and read operations by >.

• Line and column number of the operation.

This table captures the information available on the Variable Access pane in the
Polyspace user interface.

Related Examples
• “Customize Existing Report Template”

8-29

8 Polyspace Report Components — Alphabetical List

Variable Checks Details Ordered By Review
Information
Create table with Polyspace Code Prover global variable results ordered by review
information

Description

This component creates tables displaying the Polyspace Code Prover global variable
results in your code. All checks with same combination of Classification and Status
appear in the same table.

Related Examples
• “Customize Existing Report Template”

8-30

9

Configuration Parameters

• “Product mode” on page 9-2
• “Settings from (C)” on page 9-3
• “Settings from (C++)” on page 9-5
• “Use custom project file” on page 9-7
• “Project configuration” on page 9-8
• “Enable additional file list” on page 9-9
• “Stub lookup tables” on page 9-10
• “Input” on page 9-12
• “Tunable parameters” on page 9-13
• “Output” on page 9-14
• “Model reference verification depth” on page 9-15
• “Model by model verification” on page 9-16
• “Output folder” on page 9-17
• “Make output folder name unique by adding a suffix” on page 9-18
• “Add results to current Simulink project” on page 9-19
• “Open results automatically after verification” on page 9-20
• “Check configuration before verification” on page 9-21
• “Verify all occurrences” on page 9-22

9 Configuration Parameters

Product mode

Select type of Polyspace code analysis to run

Settings

Default: Code Prover

Code Prover

Run a Polyspace Code Prover verification.
Bug Finder

Run a Polyspace Bug Finder analysis.

Dependency

You see only the products for which you have a license. If you do not have a Polyspace
Code Prover license, the default product mode is Bug Finder.

Command-Line Information

Use the pslinkoptions property VerificationMode.

See Also
pslinkoptions | pslinkoptions Properties

Related Examples
• “Run Analysis for Embedded Coder”

9-2

 Settings from (C)

Settings from (C)

Select settings for the analysis configuration. You can quickly activate coding rules
checking for generated C code

Settings

Default: Project configuration

Project configuration

Run Polyspace with the options specified in the “Project configuration” on page
9-8 or “Use custom project file” on page 9-7.

You do not check coding rules unless you select a rule set in the configuration.
Project configuration and MISRA AC AGC checking

Run Polyspace with the options specified in the Project configuration plus MISRA
AC-AGC obligatory and recommended rules.

Project configuration and MISRA C 2004 checking

Run Polyspace with the options specified in the Project configuration plus all
MISRA C 2004 rules.

Project configuration and MISRA C 2012 checking

Run Polyspace with the options specified in the Project configuration plus all
MISRA C 2012 rules. This option automatically applies the rule categories for
generated code. See Use generated code requirements (-misra3-agc-mode).

MISRA AC AGC checking

Check compliance with the MISRA AC-AGC obligatory and recommended rules. After
rules checking, Polyspace stops.

MISRA C 2004 checking

Check compliance with all MISRA C 2004 rules. After rules checking, Polyspace
stops.

MISRA C 2012 checking

Check compliance with all MISRA C 2012 rules. This option automatically applies
the rule categories for generated code. See Use generated code requirements (-
misra3-agc-mode). After rules checking, Polyspace stops.

9-3

9 Configuration Parameters

Dependency

This setting overrides custom configuration settings in “Project configuration” on page
9-8 and “Use custom project file” on page 9-7. If you want to use your custom
coding rule settings, select the Project configuration option.

Command-Line Information

Use the pslinkoptions property VerificationSettings.

See Also
pslinkoptions Properties | pslinkoptions

Related Examples
• “Specify Type of Analysis to Perform”

9-4

 Settings from (C++)

Settings from (C++)

Select settings for the analysis configuration. This option allows you to quickly activate
coding rules checking for generated C++ code.

Settings

Default: Project configuration

Project configuration

Run Polyspace with the options specified in the “Project configuration” on page
9-8 or “Use custom project file” on page 9-7.

You do not check coding rules unless you select a rule set in the configuration.
Project configuration and MISRA C++ checking

Run Polyspace with the options specified in the Project configuration plus MISRA
C++ required rules.

Project configuration and JSF C++ checking

Run Polyspace with the options specified in the Project configuration plus JSF C+
+ shall rules.

MISRA C++ checking

Check compliance with the MISRA C++: 2008 required rules. After rules checking,
Polyspace stops.

JSF C++ checking

Check compliance with the JSF C++ shall rules. After rules checking, Polyspace
stops.

Dependency

This setting overrides custom configuration settings in “Project configuration” on page
9-8 and “Use custom project file” on page 9-7. If you want to use your custom
coding rule settings, select the Project configuration option.

Command-Line Information

Use the pslinkoptions property CxxVerificationSettings.

9-5

9 Configuration Parameters

See Also
pslinkoptions | pslinkoptions Properties

Related Examples
• “Specify Type of Analysis to Perform”

9-6

 Use custom project file

Use custom project file

Set Polyspace configuration options with a custom .psprj file

Settings

Default: Off

Off
Analysis uses configuration options from Project configuration parameters.

On
Analysis uses configuration options from the specified .psprj project file.

Dependency

The Settings from parameter overrides custom configuration settings for coding rules.
If you want to use your custom coding rule settings, set Settings from > Project
configuration.

Command-Line Information

Use the pslinkoptions properties EnablePrjConfigFile and PrjConfigFile. For
details, see pslinkoptions Properties.

See Also
pslinkoptions | pslinkoptions Properties

Related Examples
• “Configure Advanced Polyspace Analysis Options”

9-7

9 Configuration Parameters

Project configuration

Set advanced configuration options to customize the analysis.

Settings

Open the Polyspace Configuration window by using the Configure button. Customize
additional settings in this window and save your project configuration. If you added a
custom project file in the parameter “Use custom project file” on page 9-7, that project file
configuration is shown. Otherwise, the default project template is used.

For details about the advanced options, see “Analysis Options”.

Dependency

The Settings from parameter overrides custom configuration settings for coding rules.
If you want to use your custom coding rule settings, set Settings from > Project
configuration.

Command-Line Information

Use polyspace.ModelLinkBugFinderOptions with the pslinkoptions properties
EnablePrjConfigFile and PrjConfigFile.

See Also
polyspace.ModelLinkBugFinderOptions | pslinkoptions

Related Examples
• “Configure Advanced Polyspace Analysis Options”

More About
• “Analysis Options”

9-8

 Enable additional file list

Enable additional file list

Add additional supporting code files to the analysis.

Settings

Default: Off

Off
The analysis includes no additional files.

On
Polyspace analyzes the specified C/C++ files with the generated code. Use the Select
files button to specify these additional files.

Command-Line Information

Use the pslinkoptions properties EnableAdditionalFileList and
AdditionalFileList.

See Also
pslinkoptions | pslinkoptions Properties

Related Examples
• “Include Handwritten Code”

9-9

9 Configuration Parameters

Stub lookup tables

Specify that the verification must stub auto-generated functions that use certain kinds of
lookup tables in their body. The lookup tables in these functions use linear interpolation
and do not allow extrapolation. That is, the result of using the lookup table always lies
between the lower and upper bounds of the table.

If you use this option, the verification is more precise and has fewer orange checks.
The verification of lookup table functions is usually imprecise. The software has to
make certain assumptions about these functions. To avoid missing a run-time error, the
verification assumes that the result of using the lookup table is within the full range
allowed by the result data type. This assumption can cause many unproven results
(orange checks) when a lookup table function is called. By using this option, you narrow
down the assumption. For functions using lookup tables with linear interpolation and no
extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model uses Lookup Table blocks.

Settings

Default: On

On
For autogenerated functions that use lookup tables with linear interpolation and no
extrapolation, the verification:

• Does not check for run-time errors in the function body.
• Calls a function stub instead of the actual function at the function call sites. The

stub ensures that the result of using the lookup table is within the bounds of the
table.

To identify if the lookup table in the function uses linear interpolation and no
extrapolation, the verification uses information provided by the code generation
product. For instance, if you use Embedded Coder to generate code, the lookup table
functions with linear interpolation and no extrapolation follow specific naming
conventions.

Off
The verification does not stub autogenerated functions that use lookup tables.

9-10

 Stub lookup tables

Tips

• The option applies only to autogenerated functions. If you integrate your own C/C++
S-Function using lookup tables with the model, the option does not cause them to be
stubbed.

• The option is on by default. For certification purposes, if you want your verification
tool to be independent of the code generation tool, turn off the option.

Command-Line Information

Use the pslinkoptions property AutoStubLUT.

See Also
pslinkoptions | pslinkoptions Properties

9-11

9 Configuration Parameters

Input

Choose whether to constrain input block variables.

Settings

Default: Use specified minimum and maximum values

Use specified minimum and maximum values

Analysis assumes minimum and maximum values for input variables. These values
are specified in the input block dialog box. Use this value to reduce the number of
false positive results.

Unbounded inputs

Analysis assumes full range for input variables. Use this value to run a robust
analysis that includes values outside the expected range.

Command-Line Information

Use the pslinkoptions property InputRangeMode.

See Also
pslinkoptions | pslinkoptions Properties

Related Examples
• “Specify Signal Ranges”

9-12

 Tunable parameters

Tunable parameters

Choose how to treat tunable parameter values during the analysis. Treat values as either
constants or a range of values.

Settings

Default: Use calibration data

Use calibration data

Analysis assumes constant values for tunable parameters. Use this value to run a
contextual analysis. This option can reduce the number of false positive results.

Use specified minimum and maximum values

Analysis assumes a range of values for the tunable parameter variables. Specify
maximum and minimum values in the model. Use this option to run a robust analysis
that includes values outside the expected parameter value.

Command-Line Information

Use the pslinkoptions property ParamRangeMode.

See Also
pslinkoptions | pslinkoptions Properties

Related Examples
• “Specify Signal Ranges”

9-13

9 Configuration Parameters

Output

Choose whether to verify output values.

Code Prover option only. Bug Finder cannot check output values.

Settings

Default: No verification

No verification

Polyspace does not verify output values.
Verify outputs are within minimum and maximum values

Polyspace checks to see if the output variable values are within the expected
minimum and maximum values. Specify the minimum and maximum values in the
output block dialog boxes.

Command-Line Information

Use the pslinkoptions property OutputRangeMode.

See Also
pslinkoptions | pslinkoptions Properties

Related Examples
• “Specify Signal Ranges”

9-14

 Model reference verification depth

Model reference verification depth

Only for models that use Embedded Coder generated code. Indicate how deep into the
model hierarchy to analyze.

Settings

Default: Current model only

Current model only

Polyspace analyzes only the current model
1

Polyspace analyzes the current model and the referenced models that are one level
below the current model.

2

Polyspace analyzes the current model and the referenced models that are up to two
levels below the current model.

3

Polyspace analyzes the current model and the referenced models that are up to three
levels below the current model.

All

Polyspace analyzes the current model and all referenced models.

Command-Line Information

Use the pslinkoptions property ModelRefVerifDepth.

See Also
pslinkoptions | pslinkoptions Properties

Related Examples
• “Configure Analysis Depth for Referenced Models”

9-15

9 Configuration Parameters

Model by model verification

Only for models that use Embedded Coder generated code. Analyze each model
or referenced model individually. If you have a large project, this option can help
modularize your analysis .

Settings

Default: Off

Off
Polyspace analyzes your models together. Model interactions are analyzed.

On
Polyspace analyzes your model and each of its referenced models in isolation. This
option does not analyze model interactions.

Command-Line Information

Use the pslinkoptions property ModeRefByModelRefVerif.

See Also
pslinkoptions | pslinkoptions Properties

Related Examples
• “Configure Analysis Depth for Referenced Models”

9-16

 Output folder

Output folder

Specify the location and folder name for your analysis results.

Settings

Default: results_$ModelName$

Enter a path for your results folder. If you do not use a full path, the results folder is
relative to your current MATLAB folder.

If you select “Add results to current Simulink project” on page 9-19, the results folder
is relative to the Simulink project folder.

By default, the software stores your results in Current
Folder\results_model_name.

Command-Line Information

Use the pslinkoptions property ResultsDir.

See Also
pslinkoptions | pslinkoptions Properties

Related Examples
• “Manage Results”

9-17

9 Configuration Parameters

Make output folder name unique by adding a suffix

Add a unique suffix to the results folder for every run to avoid overwriting previous
results.

Settings

Default: Off

Off
Every time you rerun your analysis, your results are overwritten.

On
For each run of the analysis, Polyspace specifies a new location for the results folder
by appending a unique number to the folder name.

Command-Line Information

Use the pslinkoptions property AddSuffixToResultDir.

See Also
pslinkoptions | pslinkoptions Properties

Related Examples
• “Manage Results”

9-18

 Add results to current Simulink project

Add results to current Simulink project

Add your Polyspace results to the current Simulink project. To use this option, you must
have a Simulink project open.

Settings

Default: Off

Off
Results are saved to the current folder.

On
Results are saved to the currently open Simulink project.

Dependencies

You must have a Simulink project open to use this option.

Command-Line Information

Use the pslinkoptions property AddToSimulinkProject.

See Also
pslinkoptions | pslinkoptions Properties

Related Examples
• “Manage Results”

9-19

9 Configuration Parameters

Open results automatically after verification

Decide whether to open your results in the Polyspace interface after running analysis
from Simulink.

Settings

Default: On

On
After you run an analysis, your results open automatically in the Polyspace interface.

Off
You must manually open your results after running an analysis.

Command-Line Information

Use the pslinkoptions property OpenProjectManager.

See Also
pslinkoptions | pslinkoptions Properties

Related Examples
• “Manage Results”

9-20

 Check configuration before verification

Check configuration before verification

Check whether model and code configurations are optimal for code analysis.

Settings

Default: On (proceed with warnings)

On (proceed with warnings)

The process stops for errors, but continues the code analysis if the configuration has
only warnings.

On (stop for warnings)

If the configuration has errors or warnings, the process stops.
Off

The software does not check the configuration.

Command-Line Information

Use the pslinkoptions property CheckConfigBeforeAnalysis. For details, see
pslinkoptions Properties.

See Also
pslinkoptions

Related Examples
• “Check Simulink Model Settings”

9-21

9 Configuration Parameters

Verify all occurrences

For S-Function analyses only. Run an analysis on all instances of the selected S-
Function.

Settings

Default: Off

Off
Analyze only the selected S-Function block. The analysis includes only information
from the selected S-Function block.

On
Analyze all occurrences of the S-function in the model. If the S-Function is included
in the model multiple times, information from all occurrences is included in the
analysis.

Command-Line Information

Use the pslinkoptions property VerifALLSFcnInstances.

See Also
pslinkoptions | pslinkoptions Properties

Related Examples
• “Verify S-Function Code”

9-22

